Active content, Mobile, E-commerce and Convergence Security
Agenda

• Executable content
• Mobile security
• E-commerce and web security
• Convergence of telecommunications and data communications
Executable Content, Definition

• Executable content is received data which is run on the client host
 – automatic execution
 – usually received from a WWW page

• Security is a problematic issue
 – how to prevent the received program from doing nasty things?
 – using all CPU capacity
 – deleting files
 – reading and sending files to external users
 – editing files and security parameters
 – signed code helps some but not all
ActiveX

- Microsoft active technology
- Basically very little security
- Idea of small controls, i.e. functional components
 - buttons, labels, charts etc
- Control security
 - loaded from disk, if not there fetched from the net
 - control is signed by a CA and the signature checked by the client
- What about signed but malicious controls?
 - examples can be found
Java

• Sun Java technology

• Java is many things
 – an object oriented programming language
 – run time environment

• Security is handled by a sandbox ideology
 – the program runs in the sandbox
 – user defines the sandbox limits
 – Java Virtual Machine guarantees the sandbox

• JVM must be compiled/plugged in the browser

• Client executable code is called an applet
Javascript

- Not related to Java
- A scripting language created by Netscape used in Web pages
- Microsoft has a non-compatible Jscript
- WAP has WMLscript
- More limited action possibilities than Java/ActiveX
- However, no sandbox-like security features!
Problems with Executable Content

- Computation is moved to the client
- Clients need to be protected from rogue service providers
- Mobile code moves from host to host, executing a task given to it
 - Clients must be protected from malicious mobile applications
 - The mobile code must be protected from a malicious host
- Users are forced to become administrators and policy makers
- Executable content keeps on appearing
 - Proxlets
 - Active networks
 - Agents
CGI and Other Server Side Code

- Code is executed in the server
 - Bugs can compromise the server (intrusions)
 - Execution requires computational resources from the server (denial of service)

- Many scripts are written by people who know little or nothing about security

- If you are using CGI scripts or servlets:
 - Keep track of what scripts you have, remove the ones you do not need
 - Control the access rights the scripts have (don’t run them as root or administrator!)
 - Do source code security review if possible
Signed code

- The program is digitally signed
- Signature keys are certified
- The browsers come with certification root keys
 - It is easy to delete and add more root keys
- With signed code, you probably know who wrote the program
- With signed code, you DO NOT KNOW if the code is malicious or not
ActiveX Authenticode

- Microsoft’s solution for securing executable content
- Code is signed
- Browser asks user whether to allow the downloaded code to run or not
- If the user accepts the certificate, the software is allowed to run without any restrictions
 - It could delete all your files
- Problem: users often want to try a program even if they do not trust its source
Java

• Applets may come from any source
• Users may want to securely run code they do not trust (they might not even know where it came from)
• Code is run in a restrictive sandbox, where it cannot do harm
 – No access to files, obtaining information about the user or network connections
• The Java programming language was designed with security in mind
 – Byte code verifier, class loader & security manager
• Sandbox implementations in browsers have had serious bugs
Security Model of a Java Applet

• Java is a general purpose language, here we are looking at applet use

• Classloader in the run time environment differentiates between local (trusted) and network (applet) code
 – Local class is (should be) always preferred to network class

• Verifier checks the byte code
 – Byte code is the binary code compiled from the Java source code and native to the Java Virtual Machine
 – The Verifier attempts to find stack over and under flows, checks correct use of variable types and generally the syntax of the byte code

• SecurityManager implements the Java sandbox
 – Sandbox limits the applet’s actions severely
The Java Sandbox

• The applet in the sandbox may not:
 – Read or write files
 – Open network connections to hosts other that the originating host
 – Initiate execution of new processes or programs
 – Use any native methods

• Only trusted code (local classes) can use the OS services
 – Local library classes check if they are called from the sandbox or from a local applet running outside the sandbox

• Signed applets can exceed the sandbox limitations
Mobility in the network

• A device may travel in an IP network

• Portable computers
 – Different IP addresses at different networks
 – IPSec has difficulties (depends on implementation)
 – Can not act as an server
 – Is outside the home network protection domain

• Mobile IP -technology
 – The device visiting a different network invites a home station to tunnel all packets to the device from the home network to the new IP address the device is using in the visiting network
 – To avoid connection capture and man-in-the-middle attacks these requests should be signed
Mobile networks

• Currently various radio networks
 – GPRS, UMTS, WLAN, GSM data, Bluetooth etc.

• Some of these crypt the traffic over the radio link, others do no
 – WLAN crypto has been broken
 – GPRS backbone network is IP packets tunneled over IP packets, uncrypted

• The network itself is a target for attackers
The Handset Programming Environment

• Handsets are opening up as programming environments
• The SIM toolkit kept the applications in the operator’s control
• New phones have open applications environments
 – Symbian EPOC
 – PalmOS
 – Microsoft
• Mobile devices are typically limited by memory, CPU power and communications bandwidth
 – Implementing anything on these devices is going to be interesting
 – Implementing full scale PKI solutions is going to be demanding
SIM Card

• The SIM card is a tiny computer (CPU and memory) usually owned by the telephone operator
• It usually contains the user's identity and cryptographic functions for authentication on the cellular network
• The SIM Application Toolkit
 – The SIM Toolkit is a standard for applications that can be included in the production stage or downloaded from the cellular network to the SIM
• This means that the SIM can contain security functions, like encryption or authentication
• On this platform it is possible to build commerce and other systems
Handset side Security

• The main problem is interference between applications
 – In most environments it would be easy to write a trojan horse
 which would target a popular banking application on the handset
 – The proposed programming environments do not offer tight security

• The possibility of internal firewalls in handsets is not too remote

• Viruses are sure to appear in the future
 – A Bluetooth virus would interestingly spread like a medical virus

• Handsets will also be used as interfaces to ERMs and other information systems
Who controls the handset?

- The manufacturer decides the environment
- The operator owns the tamper resistant SIM
- The owner (company) is in theory in control
- The user has the physical control
Securing E-commerce

- E-commerce is an application over some infrastructure, like the Internet
- As an application it has several security needs
 - Security of the serving infrastructure technology
 - Security of the information in the server
 - Security of the transaction
 - Non-repudiation needs
Types of E-commerce

• **Business to Business**
 – Typically medium size to large transactions and long term relationships

• **Business to Consumer**
 – Typically small to medium size transactions and loose relationships

• **Consumer to Consumer**
 – Typically small to medium size transactions, lack of trust between the parties and no prior relationships

• **Different types of commerce prefer different solutions**
E-commerce servers

- WWW and e-mail are the most common applications
- Standard firewall and host security solutions can be used to secure the server
- The server often contains credit card information, customer addresses, business confidential data, pending orders etc.
 - Some credit card companies already require that the credit card information is located in a separate server
 - Front and back-end server architecture
 - Threats both to confidentiality and integrity
E-commerce transactions

- Identifying the participants is often required
 - SSL authenticates the server
 - PKI systems could be used to authenticate both participants (once they are in global use)
 - PGP and S/MIME could be used, but are rarely used
 - Extranets can use PKI or usernames and passwords
 - Sometimes it is easiest to accept a certain amount of losses

- There are formal standards for B2B commerce
 - EDI/OVT
 - XML-based standards are emerging
 - PKI-based signatures are beginning to be used
Non-repudiation in E-commerce

• PKI systems could provide electronic signatures
 – Many countries have laws about these

• What happens if the signer repudiates the signature?
 – The whole system may be evaluated in public court

• Transaction logs can be useful

• Instead of non-repudiation, how about pre-payment
 – In Finland the banks have rather flexible online systems
 – The credit card companies have different solutions, too
 – Remember that WWW forms and cookies are freely editable by the user
Security in Telecom Networks

• Separate user and control planes
 – Technical implementation failed too often
 – E.g. hacking of in-band signalling

• Signaling security
 – Customer terminals assumed not be able to send inter-switch signals

• Signaling is truly international
 – Barriers between operators and countries

• Security by obscurity
 – A handful of key persons have vast amounts of information
Security in Data Networks

• Conventional reusable passwords
 – Subject to eavesdropping

• One-time passwords
 – Subject to connection hijacking

• Filtering based on originator addresses
 – Subject to IP spoofing and similar attacks

• Real firewalls (application proxies)

• Cryptographic protocols
 – The only real method of protecting end-to-end traffic in any open network
Integration and New Problems

Telecom network perspective

- No more user/control plane separation
 - Signaling and user data intermixed

- Borders between operators blurred
 - There are separate inter-operator and intra-operator routing etc. protocols
 - However, nothing blocks signalling data

- Terminal equipment much more intelligent

- Networks extended to customer premises
 - Physical protection not any more the same
Data network perspective

• Accounting data means real money
• Signaling spoofing may mean real money
• Telecom network more lucrative target for
 – Cover up operations
 – Terrorist attacks
• More eavesdropping possibilities
• Possibilities to create more covering profiles by eavesdropping and data analysis
• More covert channels
 – Data can be easily hidden in digital speech or video
Summary of the new risks

• Physical and logical protection weaker than in Telecom nets
• Signaling integrity importance grows
• Potential gains from attacks increase
• System is more complex, and therefore harder to manage
• New services create new possibilities for fraud
 – E.g. ATM Virtual Circuits create new virtual connections between networks
Future View: Basic security after convergence

• Data and Telecom Networks integrated
 – Signaling integrated, accounting combined
 – Signaling protected cryptographically

• Accounting integrated, possibly through a millicent system like ecash in order to reduce delay

• Integrated, fast firewalls everywhere (hardware FW)

• User data protected cryptographically

• A couple of problems left
 – How to manage cryptographic keys?
 – How to manage firewall access control?
Conclusions for future communications

• Traditional telecom security based on
 – Distinct user and control planes
 – Security by obscurity

• Traditional data security based on
 – Passwords and other weak technologies
 – Firewalls and cryptography

• Integration brings in new problems

• Only real solutions are based on cryptography

• Managing crypto poses a problem

• Trust certificates seem like a promising solution
Future of Security

• Cryptography and PKI are seen currently as the silver bullet to solve all problems
 – PKI is more complex than originally thought

• It has been said that this is the “golden age” of hacking and cracking
 – Current and future systems will have security included from the start of the design process, not as an afterthought

• In the future security services are going to be more clearly defined and easily available
 – Security is an infrastructure service

• However implementing security will continue to require know-how in the foreseeable future