5
-10-

Helsinki University of Technology

Espoo, Finland
Content Management Framework

Specification of Architecture

Project
IPMAN

Author
A. Mednonogov

Version
CMF-SA-0.01

Date
17-July-2000

1 Introduction

The purpose of this document is to define a component-level architecture of Content Management Framework (CMF). It is envisioned that CMF is implemented as a set of CORBA components interacting with each other. Hence, hereafter CMF is specified as a collection of IDL interfaces, with the semantical meaning of each interface and its operation explained in detail and with lifecycle and interaction of the components shown in form of sequence diagrams.

Component nature of CMF architecture has a benefit of being reusable and manage​able to deploy. We view CMF as a collection of CORBA servers (active components), clients (passive components) and objects which combine server and client capabilities (mixed components). While active components can be sufficiently described in terms of IDL, use of IDL for defining passive components is somehow complicated. Hence, while passive components and their roles can be explicitly declared in the present specification, their behaviour is implicitly defined by their interaction with active components as shown in sequence diagrams.

2 General Notes

The following implementation notes apply to the rest of this document. In this section, we agree on the meaning of commonly used terms, provide an overview of CMF component architecture as well as technical recommendations for components installation in the CMF network. For generic overview of Content Management Framework and explanation of basic terms, see Document CMF-AO-1.00, ”Architectural Overview”.

2.1 Terms and Definitions

CMF domain – a set of CMF components instantiated by a single content provider, one or more content users and one or more content suppliers. All components within a single domain communicate with their peer components in the same domain and do not communicate with components from other domains. Technically speaking, each domain is uniquely identified by IOR (Interpoperable Object Reference) of its Naming Server, as defined in OMG CORBA Naming Service specification. Naming Server provides references to active components in the same domain upon request of reactive or mixed components (see section 2.2 for details). Currently, CMF specification does not define interaction of several domains with each other. Specification of a communicating federation of CMF domains is left for the future versions of CMF.

Content Management System (CMS) – a concrete physical implementation of CMF specification. Although difference between terms CMF and CMS is somehow opaque, generally CMS can be referred to as a collection of implemented interfaces defined by CMF. CMS has the meaning almost identical to term ”CMF domain”.

2.2 CORBA Naming & Persistent Object Services

In this specification, several components are defined as singletons, what means that there shall be one and only one physical instance of such component per each CMF domain. Singletons are created at CMS startup and are expected to be available throughout the whole CMS lifecycle. Hence, it is natural to associate each singleton with a well-known location in the naming hierarchy of the Naming Service running in the CMF domain.

Hereafter, defining an interface as a singleton implicitly assumes that it will be put to the Naming Service naming hierarchy under the context which matches IDL name scope within which this singleton has been defined. For instance, a singleton declared as IDL interface ”::CMF::ContentServer” shall be bound to the context ”CMF” as named object ”ContentServer”. In this example, ”CMF” identifies module, ”ContentServer” identifies singleton interface, and ”::CMF::ContentServer” identifies absolute name scope for the interface.

It is also recommended (although not required) to use CORBA Persistent Object Service for singletons or provide their persistent operation in some other, possibly proprietary way. Persistence of an object means that its state is preserved across system failures. If persistence is especially desired, this is stated in specification explicitly. Usually it means that component failure and its consequent non-persistent recovery might largely affect functionality of other parts of the system or even make the whole system inoperable.

It shall be noticed that if an active component recovers from failure, its new IOR may differ from the one available before. This may lead to a situation when clients which are unaware of server failure and its consequent recovery may attempt to invoke server operations using its obsolete IOR. Naturally, clients shall be notified of this change in some way. Current specification does not discuss this issue in any way, hence it is a responsibility of an implementor to provide a suitable mechanism for handling this situation. For example, CORBA Persistent Object Service or Lifecycle Service can be used.

3 CMF Components

3.1 Object Identifier Component

Objective: Object Identifier Component (OIC) is a singleton that provides consistent means for allocation of unique identifiers within a single CMF domain. Although uniqueness of identifiers across different domains is not guaranteed by the present specification, current design of OIC is future-proof in this sense. OIC allocates a new identifier every time it is requested to do so and guarantees that no such identifier has been allocated before or will be allocated in the future.

Allocated identifier is represented as a 128-bit entity and consists of two 64-bit parts, one of them representing CMF domain identifier and another one containing a new unique key generated by OIC. As interaction of different CMF domains is left out of the scope of the present specification, currently it is required that domain identifier part is set to zero, being reserved for the future use.

It is especially desired that OIC runs in persistent mode, as it can be used by many other components for on-the-fly assignment of unique identifiers to object references, documents, document types, retrieval algorithms and so on. Implementation of OIC component must employ the following implementation strategy: initially assign 65536 to internal counter representing unique key and increment it every time a request for a new unique identifier is accepted. The reason for starting internal counter with 65536 is that lower values are reserved by CMF for its own purposes. In particular, 0:0 is reserved for NULL ObjectIdentifier.

It is estimated that such implementation strategy will produce unique identifiers for the foreseeable future even if OIC accepts millions of requests per second. Implementation may also restrict amount of requests handled per second to any limit it finds reasonable (limit of 1,000,000 requests per second is recommended).

Description in IDL:

module CMF {

 /* Aggregate type defining structure of unique identifier

* returned by Object Identifier Component. */

 struct ObjectIdentifier {

 unsigned long long domainID;

 unsigned long long objectKey;

 };

 /* Object Identifier Component. */

 interface OIC {

 /* Every consequent call to this method will return a new

* unique pair ‘domain ID - objectKey’. Current version of

* CMF specification requires that domainID must be set to

* zero. */

 ObjectIdentifier getUniqueIdentifier();

 };

};
3.2 Notification Component

Objective: Notification Component (NC) provides a simple framework to be used by CMF components willing to be notified of a particular event (hereafter such components are referred to as listeners) emitted by some other components (hereafter referred to as emitters). NC is a lightweight alternative to CORBA Event service and Notification service. It provides a base interface to be inherited by listener components and enumerates currently defined CMF-specific event types together with their semantic meaning. Notification Component core part is a singleton component “::CMF::NC::Singleton” which handles interaction of listeners and emitters. Future versions of CMF may define new event types not present in the current version of CMF specification. Each CMF event is associated with a well-known ObjectIdentifier from the list of reserved ones (see section 3.1), and user may introduce his own event types on-the-fly. If he is willing to do so, however, then it is strongly recommended that he obtains a unique identifier from OIC component instead of defining it as a constant value in his own way. Such implementation strategy introduces additional overhead, but it ensures that CMF event types are allocated and shared by multiple users in a consistent manner.

Currently, event types are identified exclusively by objectKey part of ObjectIdentifier, and domainID part is required to be set to zero. For this reason, constants representing event types are enumerated in IDL description as integers of IDL type ‘unsigned long long’. User event types shall not use identifiers in the range of [0...65535] which are reserved by CMF.

Notification mechanism shall normally be implemented as follows: Consider compo​nent A is willing to be notified of some events emitted by component B. To do so, A derives from interface “::CMF::NC::Listener” and advertises itself to singleton “::CMF::NC::Singleton” by invoking “register()” or “registerFiltered()” operation, thus registering as a listener to a particular event. To release itself as a listener, A calls “release()” or “releaseFiltered()”. Every time some event happens on the side of B, B invokes operation “::CMF::NC::Singleton::notify()”. Being invoked, this operation checks its list of listeners registered for this event and notifies them by invoking “notify()” operation of every listener. Listeners are free to handle this operation in their own way. It is advised that singleton implementation takes into account possible failures of listeners and handles timeouts or communication failures gracefully. Singleton implementation may implement a mechanism for removal of listeners from its list of registered ones, if listener was detected as non-responding after several invocations of its “notify()” operation (removal of listener after three such invocations is recommended).

Description in IDL:

module CMF {

 typedef sequence<Any> AnySeq;

 /* Notification Component. */

 module NC {

 /* Base interface to be derived by listeners. Listener’s

 * operation ‘notify()’ will be invoked in case event

 * it is listening to occurred. */

 interface Listener {

 void notify(in ObjectIdentifier event, in AnySeq data);

 };

 /* Singleton component - a core part of NC. */

 interface Singleton {

 /* Operation to be invoked by listeners willing to

 * be notified of a particular event. */

 void register(in Listener listen,

 in ObjectIdentifier event);

 /* Operation to be invoked by listeners willing to be

 * notified of a particular event which is associated

 * with a particular content of ‘data’ field. Given N

 * elements of Any type in ‘data’ field promoted in

 * ‘registerFiltered()’ operation, listener will be

 * notified of a particular event only if first N items

 * of ‘data’ field in emitted event match the values

 * mentioned in ‘registerFiltered()’. For instance,

 * consider listener A invokes ‘registerFiltered()’

 * with the following arguments (in pseudo notation):

 *

 * registerFiltered (listen = A, event = B, data = {C,D}).

 *

 * After that, it will be notified of event B if it contains

 * any of the following in the data field: {C,D}, {C,D,E},

 * {C,D,F}, {C,D,G} etc. It will NOT be notified of event B

 * if it contains any of the following in the data field:

 * {C}, {D}, {D,C}, {C,E}, {D,C,E} etc. unless listener A

 * registered to listen for event B by invoking ‘register()’

 * operation. */

 void registerFiltered(in Listener listen,

 in ObjectIdentifier event, in AnySeq data);

 /* Operation to be invoked by listeners willing to

 * stop being notified of a particular event. */

 void release(in Listener listen,

 in ObjectIdentifier event);

 /* Operation to be invoked by listeners willing to

 * stop being notified of an event associated with

 * a particular ‘data’ field. */

 void releaseFiltered(in Listener listen,

 in ObjectIdentifier event, in AnySeq data);

 /* Operation to be invoked by emitter of a particular

 * event once this event happens. */

 void notify(in ObjectIdentifier event, in AnySeq data);

 };

 /* Hereafter, CMF-specific event types are enumerated, their

 * semantics is explained and the structure of corresponding

 * ‘data’ argument in ‘notify()’ is defined for each case. */

 const unsigned long long EVENT_IRC_DOC_ADDED = 1;
 };

};

3.3 Shared Data Component

Objective: Shared Data Component (SDC) is a singleton which provides a flexible low-level interface for consistent referencing and sharing data within a CMF domain between different components. In no way it is designed to compete with SQL or any other sophisticated data storage and retrieval technique. Its primary purpose is to address an issue, which is best illustrated by the following example: Consider you have a (possibly structured) immutable data object that you would like to register within several independent components. These components would then handle this data object, again independently. “Register” most often means either associating this object with some key or attribute in a map or table, or simply putting it to a set or collection. Naturally, a design pattern for such registration procedure would imply registering a reference to the object instead of the object itself, having object data associated with object reference in a dedicated centralized component (in this case, SDC). This may significantly reduce amount of memory used by other components. SDC can be viewed as a centralized memory management interface on a component level, globally available within a single CMF domain. SDC is extensively exploited by other components of CMF for the reason of memory optimization.

SDC component follows a pattern of reference counting and maintains an internal reference counter for each object. Reference counting allows automatic garbage collection of objects which are no longer referenced by any other object. Rules of reference counting are defined for SDC as follows: (a) ‘allocate’ and ‘associate’ operations set reference counter to 1; (b) every consequent ‘connect’ operation increases reference counter by 1; (c) every consequent ‘disconnect’ operation decreases reference counter by 1; (d) when object reference counter is set to zero, this object is automatically garbage collected, i.e. physically removed from SDC.

As a consequence of these rules, CORBA object which creates some data object in SDC heap, implicitly connects itself to this object. Hence, it is important that such CORBA object invokes ‘disconnect’ operation when it is no longer willing to maintain a reference to the data object in question.

As a more powerful and more reliable alternative to reference counting, CORBA objects may acquire locks on data objects in SDC. As long as CORBA object possesses one or more locks on objects in SDC, it is regularly pinged by SDC to make sure that it is alive. If CORBA object does not respond to ‘ping’ requests thrice, all locks associated with this object are removed. Data object may not be garbage collected while there exists at least one lock associated with it, even if its reference counter is equal to zero.

Description in IDL:

module CMF {

/* Shared data component. Notice that SDC itself internally uses

 * service provided by OIC, hence it is recommended to have both

 * OIC and SDC physically located on the same host. SDC may be

 * viewed as a centralized memory management interface on a

 * component level, globally available within a single CMF

 * domain. Core part of SDC is a singleton. */

module SDC {

 /* ‘Activated’ interface is derived by objects which do not rely

 * on reference counting and want to explicitly prevent some data

 * from being removed from SDC heap by acquiring a lock on this

 * data. Data in SDC heap cannot be removed by garbage collector

 * even if its reference counter is equal to 0, unless all locks

 * associated with this data are released. As there is no surety

 * that an object that locked some data does not fail at some

 * point (thus possibly leaving trash in SDC uncollected forever),

 * objects that issued locks on SDC data are regularly pinged to

 * ensure that they are alive. If some object did not respond to

 * ping request thrice, all locks associated with this object are

 * removed. Locks are much more reliable and powerful alternative

 * to reference counting, but they introduce additional processing

 * and traffic overhead. Ping requests are sent to each object

 * that possess a lock on some data every 30 seconds. */

 interface Activated {

 /* This operation always returns TRUE and is used to ping

 * object which derives from this interface. */

 boolean isAlive();

 };

 /* Singleton - a core part of SDC. */

 interface Singleton {

 /* Associate data object with unique ObjectIdentifier obtained

 * by SDC from OIC. SDC since then stores this data object

 * internally. This is similar to allocating memory in heap,

 * copying data object into this memory and returning reference

 * to the object in high-level programming languages. Operation

 * returns NULL if allocation procedure failed to complete. */

 ObjectIdentifier allocate(in Any data);

 /* Associate data object with unique ObjectIdentifier obtained

 * from OIC. This operation is almost similar to ‘allocate’.

 * However, unlike in ‘allocate’, it is responsibility of a

 * client that calls this operation to obtain a proper unique

 * identifier from OIC. Operation returns TRUE if no binding

 * for ObjectIdentifier supplied by a client existed before

 * operation call, what means successful completion of an

 * operation. Operation returns FALSE if such binding already

 * exists or internal problem occurred and hence SDC failed to

 * complete a request. */

 boolean associate(in ObjectIdentifier id, in Any data);

 /* Return data object referenced by ObjectIdentifier as ‘out’

 * parameter. Return value of operation is TRUE if there exist

 * an object associated with this ObjectIdentifier, and FALSE

 * otherwise. In the latter case, the content of ‘data’ field

 * is undefined, although it contains a valid data unit. This

 * method is similar to dereferencing operation in high-level

 * programming languages. */

 boolean locate(in ObjectIdentifier id, out Any data);

 /* This operation is called by components willing to maintain a

 * reference to the object. Reference counter of the object is

 * increased by 1. Operation returns FALSE if object with id

 * provided as an argument was not found in SDC, otherwise it

 * returns TRUE. */

 boolean connect(in ObjectIdentifier id);

 /* This operation is called by components no longer willing to

 * maintain a reference to the object. Reference counter of the

 * object is decreased by 1. Operation returns FALSE if object

 * with id provided as argument was not found in SDC, otherwise

 * it returns TRUE. */

 boolean disconnect(in ObjectIdentifier id);

 /* This operation is called by components willing to maintain a

 * reference to data object by acquiring a lock on it. CORBA

 * component that initiated operation invocation provides a

 * reference to itself in ‘obj’ field. This CORBA component is

 * since then regularly pinged by SDC to make sure it is alive.

 * Operation returns FALSE if object with ‘id’ provided as an

 * argument was not found in SDC, otherwise it returns TRUE. */

 boolean lock(in ObjectIdentifier id, in Activated obj);

 /* This operation is an opposite to ‘lock()’ operation. It

 * returns FALSE if object with ‘id’ provided as an argument

 * was not found in SDC, otherwise it returns TRUE. */

 boolean unlock(in ObjectIdentifier id, in Activated obj);

 };

};

};
3.4 Indexing & Retrieval Component

Objective: In addition to indexing and query capabilities of SQL, the use of which is encouraged in CMF, sophisticated indexing and retrieval (I&R) mechanisms might need to be deployed, and these can be well beyond the scope of SQL, or SQL might introduce a considerable operational overhead for the deployment of new I&R services. I&R component (IRC) provides a flexible means for plugging content retrieval algorithms into CMF, in addition to capabilities SQL language provides. I&R component is defined as a collection of several IDL interfaces and can be viewed as a self-contained framework as it provides a higher level of abstaction for delpoyment of heterogeneous retrieval engines. Core part of I&R component is implemented as a singleton.

In the following, we define for clarity several terms widely accepted in I&R community. Document set designates a collection of objects (documents) to which retrieval algorithm is being applied. Query is an object representing template or pattern which sets up retrieval conditions and affects the result of query execution. Query might well be an object which key characteristics (feature vector) are compared against key characteristics (feature vectors) of objects in the document set. Normally, user formulates a query and retrieves it in the document set. Result of query execution is called a result list. Unlike e.g. document set, a result list constitutes an ordered collection of items. A typical item in the result list contains a reference to an object in the document set, although not necessarily.
Hereafter, CMF-specific functionality is discussed. CMF may contain several document sets, each having its own document type. There exists 1:1 relation between ”document set” and ”document type”, hence document types act as identifiers for document sets. All documents in the set have the same type the whole set has. It is possible to register the same document in several document sets, hence a single document may have multiple types. Documents are assumed to be immutable objects.

Each result list is associated with its own result type. Unlike document sets, result lists (and their items) are dynamic objects, hence it is possible that several result lists have the same result type, but not vice versa. All result items in the list have the same type the whole list has. A single result item may have only one type. Each query has a query type. It is possible that several queries have the same query type, but not vice versa.

Technically speaking, queries, result items and documents are just structured data objects, with their types represented by integer values. It is possible for a document to have the same structure as a query or result item and vice versa, or for a query to have the same structure as a result item or vice versa. As soon as a concept of types has been introduced primarily for the purpose of grouping similarly structured objects into classes, it is claimed that a document may be assigned the same type (integer value) a query or result item has and vice versa, or query assigned the same type result item has and vice versa. However, if such overlapping takes place, it is required that entities of the same type have semantically equivalent structure.

[image: image1.png]Document \ MN @
set

11

Document

Result
list

N:T

—

5

@ ; :
item

DQR-triple

M:

1

i

N

Algorithm
type

11
Algorithm

Figure 1. Entity-relationship diagram for I&R component.
Let D = (d1, d2, ..., dN) designate a set of document types, Q = (q1, q2, ..., qN) designate a set of query types, R = (r1, r2, ..., rN) designate a set of result types, A = (a1, a2, ..., aN) designate a collection of retrieval algorithm types. Items in D, Q, R and A are integers. Each algorithm identified by am is defined for a triple tm = {di, qj, rk} T = D  Q  R or for several such triples (let us further refer to these triples as DQR-triples). Several algorithms may be defined for the same triple. As opposed to documents, queries and result items, algorithms represent behavioural objects, hence it would have been nonsense to expect from them structural similarity to other entities. For this reason, algorithm types may not overlap with types of other entities. In other words, A  (D  Q  R) = . On the other hand, if we define L as a set of all possible sets of integers and L’ = L  , then as it was said previously, D  Q  L’, D  R  L’, Q  R  L’.

IRC allows coexistence of multiple I&R algorithms which can be applied to different DQR-triples. The relationship between ”algorithm” and ” DQR-triple” is many-to-many (M:N), that is the same algorithm can handle multiple DQR-triples, and the same DQR-triple can be handled by multiple algorithms. For each algorithm applicable to retrieval in the domain of some DQR-triple, its default priority with respect to this DQR-triple is defined. By default, actual retrieval is performed by the algorithm which has the highest default priority with respect to DQR-triple, unless preferred algorithm type is selected explicitly by query initiator. In case of a tie (that is, several algorithms have the highest priority with respect to the DQR-triple), algorithm with the lowest ID is selected for retrieval among competing ones. Entity-relationship diagram modeling concepts of IRC is shown in Fig. 1.

Description in IDL:

module CMF {

 /* Indexing and retrieval component. */

 module IRC {

 /* ’Singleton’ is a core part of IRC. It registers and releases

 * pluggable retrieval components, documents and their types.

 * It accepts information about which retrieval components are

 * willing to handle queries of a particular type or types. */

 interface Singleton : ::CMF::SDC::Activated {

 /* Register a new document in a document set. Document is

 * identified by its reference in SDC (’docRef’), document

 * set is identified by ’docType’. If no such document set

 * exists, it is created and the document becomes the first

 * item in a newly created set. IRC also acquires a lock on

 * the document by calling ::CMF::SDC::lock() operation. It

 * also emits event of type EVENT_IRC_DOC_ADDED containing

 * {’docType’, ’docRef’} sequence in the ’data’ field of

 * ’notify()’ operation. Operation returns TRUE if completed

 * successfully, otherwise it returns FALSE. */

 boolean addDocument(ObjectIdentifier docType,

 ObjectIdentifier docRef);

 /* Remove a document ’docRef’ from a document set of type

 * ’docType’. If the document is not contained in any other

 * document set, IRC unlocks the document in SDC by calling

 * ::CMF::SDC::unlock() operation. It also emits event of

 * type EVENT_IRC_DOC_REMOVED with {’docType’, ’docRef’}

 * contained in the ’data’ field of ’notify()’ operation.

 * Operation returns TRUE if it is completed successfully,

 * otherwise it returns FALSE. */
 boolean removeDocument(ObjectIdentifier docType,

 ObjectIdentifier docRef);
 };

 };

};
