
Helma Technical Overview

Tommi Ilmonen
Markku Reunanen

December 1, 2004

2

Contents

1 Introduction 7
1.1 The Helma People. 8
1.2 About this Document. 8

2 Hardware 9
2.1 EVE . 9
2.2 Motion Tracker . 9
2.3 Näprä . 9
2.4 Graphics Computer. 9
2.5 Peripheral Linux PC . 10

3 General Application Structure 13
3.1 Fundamental Concepts. 13

3.1.1 Geometry. 13
3.1.2 World . 13
3.1.3 Operator . 13
3.1.4 Operator Manager. 14
3.1.5 AU-Coordinates . 14
3.1.6 Persistence of Geometry. 15
3.1.7 Geometry Generations. 16
3.1.8 Layers. 16
3.1.9 Geometry Groups. 16
3.1.10 Operator Groups. 16
3.1.11 Config. 17
3.1.12 WIMP. 17
3.1.13 Quick Choices. 18
3.1.14 Recorders. 18
3.1.15 Timeline . 18
3.1.16 Gallery . 18
3.1.17 Snapshots. 18

3.2 Support Components. 18
3.2.1 Renderers. 19
3.2.2 OpenGL Data (GlData). 19
3.2.3 GEE_Engine. 19
3.2.4 Crystal::Engine. 19
3.2.5 Different Applications (Qt and VR Juggler). 19

3.3 Modes. .19
3.3.1 Drawing/Animation Mode. 19
3.3.2 WIMP Mode . 19

3.4 Remarks. .19
3.5 Pros & Cons. 20

3

4 CONTENTS

3.6 Usability Pitfalls . 20
3.6.1 Unwanted Operator was Here. 20
3.6.2 Stretching Animation Events Affects the Outcome. 21

4 Example Scenarios 23
4.1 Basic Drawing . 23
4.2 A Case with Undo. 24

5 Main Software Components 25
5.1 VEE — Visual Effects Engine. 25
5.2 GEE — The Geometry Engine. 26

5.2.1 Viewer application. 26
5.3 Animaland — The Real Application. 27

5.3.1 Crystal::Engine. 27
5.3.2 VR Juggler-app. 27
5.3.3 Qt-app . 27
5.3.4 Widgets. 28

6 External Components 29
6.1 Compulsory Home-Made Software Components. 29

6.1.1 DIVA Libraries . 29
6.1.2 Mustajuuri . 29
6.1.3 Qt Audio Widget Library — QAWL. 29
6.1.4 AC — Auralization Control . 30
6.1.5 Fluid — Flexible User Input Design. 30
6.1.6 ConfigReader. 30
6.1.7 Solar — Simple Object Loader and Renderer. 30
6.1.8 CaveProj . 31
6.1.9 VR Smuggler. 31

6.2 Compulsory Off-the-Shelf Software Components. 31
6.2.1 C++ & STL . 31
6.2.2 OpenGL. 31
6.2.3 Renderman. 31
6.2.4 Qt .32
6.2.5 Python . 32
6.2.6 SWIG — Simplified Wrapper Interface Generator. 32
6.2.7 VR Juggler . 32
6.2.8 WML — The Wild Magic Library. 33
6.2.9 Opcode — Optimized Collision Detection. 33
6.2.10 PLIB — Steve’s Portable Game Library. 33
6.2.11 Libaudiofile. 33
6.2.12 System Audio and MIDI Interface. 34

6.3 Auxiliary Tools . 34
6.3.1 Doxygen and Graphviz. 34
6.3.2 CVS — Concurrent Versions System. 34
6.3.3 Linux & IRIX . 34
6.3.4 Valgrind. 34
6.3.5 GNU Make and Autoconf. 35
6.3.6 Performance Profiling Tools. 35

6.4 Remarks about Portability. 35

CONTENTS 5

7 Application Control Flow 37
7.1 About Rendering. 39
7.2 Hardware & VR Juggler . 39

8 Geometrical Primitives 41
8.1 3D Path .41
8.2 Triangle Mesh. 41
8.3 Line Group . 42
8.4 Particle Cloud. 42
8.5 2D Profile .43
8.6 Group .43
8.7 Brush .43
8.8 Remarks. .43

9 Features of Helma 45

10 Installation & Compilation 49
10.1 Manual Installation. 49
10.2 Build Scripts . 49
10.3 Compilation Environment. 50

11 Some Remarks 51
11.1 VEE_Operator vs. GEE_Operator. 51
11.2 Configuration Files. 51
11.3 Thread Safety. 51
11.4 Debug and Error Output. 51
11.5 The Interplay Between Operators and Geometry. 52
11.6 Particles vs. Vertices. 53
11.7 Identifiers .53
11.8 Coordinates. 53
11.9 Random Numbers. 53
11.10Vector and Matrix Classes. 53
11.11Rendering and Transformations. 54
11.12Operator Optimizations. 54
11.13Coding Style . 55

11.13.1 Prefixes (VEE, GEE, Crystal, Fluid). 55
11.13.2 Functions that Return a Pointer. 55
11.13.3 Variable Names. 55
11.13.4 Caching Variables to the Stack. 55
11.13.5 Include Ordering. 56
11.13.6 Float vs. Double. 56
11.13.7 Performance vs. Safety. 56
11.13.8 Trace Functions and Keyword fname. 57
11.13.9 Perfection. 57

11.14Common Utility Classes. 57
11.14.1 Template class VEE_ReferenceObject. 57
11.14.2 Template class VEE_RefPtr. 57
11.14.3 Template class VEE_ClonablePointer. 57
11.14.4 Class GEE_Debug. 57

11.15Caveats. .58
11.15.1 Helma is Slow . 58
11.15.2 XXX_moc.C Fails to Compile (Qt Problem). 58
11.15.3 Python Script Crashes. 58

6 CONTENTS

11.15.4 Operator Fails to do Anything. 58
11.16Development and Deployment Strategy. 59
11.17Performance Bottleneck Analysis. 59
11.18Sane System Requirements. 59
11.19The Old Crystal. 60
11.20Antrum .60
11.21License Issues. 60

12 GEE File Format 63
12.1 Common file-format properties for all kinds of objects. 63
12.2 Typical file format header for main-level objects. 63
12.3 Typical file format header for low-level objects. 64
12.4 Tools for reading & writing files. 64
12.5 The Old Crystal File-Format. 64

13 Future Plans 65

Chapter 1

Introduction

Figure 1.1: An artist is building a particle cloud.

Helma is a research project to create an immersive 3D drawing/sculpting/animation software.
The basic aim is to enable intuitive artistic free-hand work in a virtual reality (VR) environment.
The research hypothesis is that such a tool would enable new kinds of digital artistic expression.
Figure1.1shows the Helma system in use — an artist is building graphics in a virtual room.

The Helma project merges the Crystal project by Tommi Ilmonen (section11.19) and Antrum
(by a student group in Helsinki University of Technology, see section11.20). Helma is funded
by the National Technology Agency of Finland — Tekes — and several companies: Valkeus
Interactive Oy, Metso Paper Oy, Numerola Oy and the Finnish Science Center Heureka.

7

8 CHAPTER 1. INTRODUCTION

1.1 The Helma People

Helma is made primarily in Helsinki University of Technology (HUT) Telecommunications Soft-
ware and Multimedia Laboratory (TML). Other organizations are Tampere University of Technol-
ogy (TUT) Department of Electronics and HUT Automation Technology Laboratory. The people
working with Helma are:

• Artist Wille Mäkelä is the project leader. Wille makes art, leads the project, specifies and
tests the user interface.

• M.Sc. Tommi Ilmonen is the technical leader and a programmer in the project. Tommi is
also the main author of this document. Tommi is responsible for geometry and animation
management and the main author of several support libraries (Fluid, VEE, Mustajuuri,
DIVA, AC).

• M.Sc. Markku Reunanen is another programmer. Markku is responsible for the upcoming
new WIMP and hardware-related problem solving (Näprä, exhibition setups).

• Professor Karri Palovuori at the TUT Department of Electronics is responsible for finger
tip tracking (hardware and software) of the Näprä.

• The physical construction of the Näprä was designed and built by people in the HUT Au-
tomation Technology Laboratory.

Of these people Wille, Tommi and Markku can be considered to the central Helma-team and
others contribute their special skills for some limited part of the system.

1.2 About this Document

This document describes the technical foundations of the Helma system. It is written so that
information about the internals of the system would be available to people joining the project or
wishing to know what is happening in the project. For this purpose we briefly illuminate each
component in the Helma architecture without digging too deep into any particular topic. The
reader is expected to have a solid technical background — otherwise the wisdom of this friendly
document may well be difficult to comprehend.

This document avoids forward-looking statements — it is a compact description of the system
as it is. A thorough description of the system would be ten times longer. For background informa-
tion, development ideas, future roadmap or scientific view of the results, you should consult some
other information source (e.g. conference papers, Helma personnel). Some expected near-term
technical changes are described in chapter13. Throughout this text we try to avoid all kinds of
humor, except where it is the only way to describe reality accurately.

The reader is encouraged to give feedback about the usability of this document, any inconsis-
tencies and typos.

Chapter 2

Hardware

Helma needs a collection of exotic hardware to run. This chapter gives overview of devices that
are needed to run Helma. Figure2.1Gives a schematic overview of Helma hardware components.

At the moment three computers are needed to run helma system. One is the motion tracker
computer (an industrial PC with special tracker boards), another is the Linux PC that processes
sound and handles Näprä input and third is the graphics computer that runs the application and
does the graphics rendering.

2.1 EVE

We run Helma in the EVE virtual room in HUT/TML (figure2.2). This is a normal back-projected
VR system with four walls and 14 loudspeakers.

2.2 Motion Tracker

We use off-the-shelf commercial motion tracker by Ascension. Any tracker is ok as long as we
can make it work properly. A reasonable tracker is one that gives us the location and rotation of
each motion sensor in same decent sample rate (at least 20 Hz).

2.3 Näprä

In Helma the motion of fingers is tracked with Näprä (figure2.3). Näprä is a combination of
finger tracking and triggering hardware. Finger tips are tracked with ultrasonic technology. The
thumb, index- and middle finger have metal caps and they provide us with contact information.

Beneath the two remaining fingers are buttons for additional triggering input. We use identical
Näpräs in both hands.

2.4 Graphics Computer

To run Helma you need a computer that handles the graphics and main application (see figure2.1).
This computer should have miraculous processing and graphics resources. The machine must be
able to output 3D graphics to multiple projectors.

Currently we use an SGI Onyx2 computer for this purpose. In the future we aim to use a
Linux cluster in its place (with master/slaves -architecture).

9

10 CHAPTER 2. HARDWARE

N
äp

rä
da

ta
M

ot
io

n
da

ta

A
ud

io
co

m
m

an
ds

G
ra

ph
ic

s

A
ud

io
 fe

ed
na

ck

L
in

ux
 P

C

M
us

ta
ju

ur
i

N
äp

rä
 s

er
ve

rs

M
ot

io
n

tr
ac

ke
r

N
äp

rä
N

äp
rä

M
ot

io
n

se
ns

or
M

ot
io

n
se

ns
or

G
ra

ph
ic

s
C

om
pu

te
r

C
ry

st
al

Figure 2.1: Helma hardware setup. The computers communicate via Ethernet.

2.5 Peripheral Linux PC

In addition to the main graphics computer we use a Linux PC that handles exotic input devices
(data gloves, Näprä) and produces audio output. The input devices are managed with Fluid servers
(section6.1.5). The audio output is calculated with Mustajuuri (section6.1.2).

The devices are not connected directly to the main computer since we want to isolate the
expensive main system against electrical hazards. Additionally some of the programming work
is easier to do on a commodity Linux system rather than on a rare SGI hardware with buggy SGI

2.5. PERIPHERAL LINUX PC 11

Figure 2.2: Experimental Virtual Environment — EVE.

Figure 2.3: Näprä prototype. There are (will be) microphones at finger-tips.

software.

12 CHAPTER 2. HARDWARE

Chapter 3

General Application Structure

Helma is a modular component-based application. Its basic structure is shown in figure3.1. The
following sections outline what all of these components are and how they co-operate.

3.1 Fundamental Concepts

In this section we cover the most fundamental concepts that are needed to understand how Helma
works.

These concepts are implemented in the GEE library; see section5.2for more thorough expla-
nation of the actual implementation.

3.1.1 Geometry

The 3D objects that are in world are called geometry. All geometry types are derived from a
common base class — GEE_Geometry. All things that are visble are called geometry. Typical
examples are triangle meshes, polylines and particle clouds. Geometry objects are always made
up of smaller primitives — vertices, triangles, particles etc.

While all visible things are geometry, geometry can also be invisible. Hidden geometry is a
nice way to maintain common data in the world (=path information).

Geometry objects have little internal logic — they represent the state of the world, but do not
alter anything voluntarily.

The geometrical primitives are further explained in chapter8.

3.1.2 World

All geometry objects reside in a world. The world is simply a geometry pool that keeps track of
all current objects. Besides keeping the geometry the world stores miscellanous information that
is without a proper home: texture name tables and the scene background color.

When one needs to find a piece of geometry, then one can query the world with the proper
object id. This method is much more safe than having ordinary C/C++ pointers that look into the
world.

3.1.3 Operator

All changes in the world are caused by operators. An operator has the capability to alter some
geometry in the world. An operator may create, modify or delete geometry objects.

Operators have some duration — a beginning time and an end time. Between these times
(limits points inclusive) the operator is active and does something in the world.

13

14 CHAPTER 3. GENERAL APPLICATION STRUCTURE

WIMP

Op. Op. Op.

Renderer

World

ParticleMesh Line

Operator

GEE_Engine

Rec. Rec. Rec.

Recorder

Geometry

Operator Manager

Config

VR Juggler−App

GEE

Crystal::Engine

CollectorRenderer GlRenderer

Qt−App

GlData

Fluid

Crystal

Figure 3.1: Main components of Helma.

3.1.4 Operator Manager

Operator manager keeps track of all operators. It knows how to run operators from frame to
frame, how to do undo and redo and how to read/write operators to a file.

3.1.5 AU-Coordinates

In the system there are two kinds of time — animation time (counted in frames) and user time
(the real time that the user is experiencing). In figure3.2 these two times are shown. Operators
can freely overlap in the animation time, but they cannot overlap in the user time. In animation

3.1. FUNDAMENTAL CONCEPTS 15

time the operators are sorted by their beginning time. In user time indexing is used, each operator
gets a unique index number. The opetators are evaluated from beginning to the end (animation
time) and from older to newer (user time).

U
se

r t
im

e

Animation time
1 2 3 4 5 6

Figure 3.2: Animation/User (AU) time coordinates. First the user has made three operators to
frame 1, then two longer operators that span from frame 2 to frame 5, then an operator that spans
frames 3-6 and finally two operators to frames 3 and 1. The animation time is expressed in frames
while the user time is quantized into operator count. Each operator has some unique location in
the operator stack. There can be any amount of time between the creation of operators.

Once we sort operators into AU-coordinates we can do number of things: Undo and redo
become trivial — we only need to pop and push operators in the user time stack. We can do
any operation at any time — create objects, modify objects etc. Operators can be moved in the
animation time. The operators can be streched in the animation time.

This approach enables us to use same operators for both instantenous work (a large amount
of geometry comes up at a one frame) and time-based work (the creation of the model becomes
animated). This means also means that all operations that one can perform on the geometry can
be animated. This maximum animatability was desired since this enables some new ways for an
artist to work: Animations can be made one frame at a time with the previous frame as a starting
point for the next frame.

There are some potentially negative side effects from this approach to the animation: 1) Ani-
mation requires processing — to get from frame x to frame x+1 may take a lot of computational
resources. 2) There are no explicit models — we only have a world with some geometry but we
do not really have 3D objects in the traditional sense (altought geometry groups an be thought of
as objects, section3.1.9).

The AU coordinates are not explicitly expressed in any C++ class – they are an implicit part
of the the general architectrure.

3.1.6 Persistence of Geometry

In Helma geometry is persistent: As animation time ticks forward geometry stays unchanged
unless it is explicitly changed. This is called inheritance (or persistence) — frame n inherits
all geometry from frame n-1 unless some operator comes along and makes changes into the
geometry.

When we rewind the state of the world to the beginning, then all geometry in the world is
deleted.

16 CHAPTER 3. GENERAL APPLICATION STRUCTURE

3.1.7 Geometry Generations

Each geometry has a generation (or version) number. This number is incremented whenever the
geometry is modified. This information is used in the OpenGL renderer that creates new display
lists for the geometry as needed.

A user should not be aware of the generation information in any way.

3.1.8 Layers

When the user is modifying existing geometry (e.g. changing color) it is typical that the operation
should not affect all geometry in the world, but rather just some parts. It is not possible to do
spatial separation between intended and unwanted geometry (since geometries may overlap).

To make it possible to craft objects in this selective way we have layers. Each geometry object
and operator belongs to some layer. In practice a layer is a mini-world that is independent of other
layers.

Layers are not explicitly expressed in any particular class. Rather all operators and geometries
have knowledge of their layer and can act accordingly.

3.1.9 Geometry Groups

The geometry in the world can be grouped. If for example someone has made geometry objects
that need to be moved together, then this can be accomplished by grouping the geometries together
and moving the group as a whole.

This reflects the grouping behavior found in most 2D/3D vector-drawing applications.

3.1.10 Operator Groups

Typically it is necessary that we change the timing of the animation. For this purpose it must be
possible to adjust the time stamps of the operators. Since the operators are related to each other
we also need to be able to maintain the temporal relationships between operators.

To handle these needs we have operator groups. Operators can be grouped in the timeline and
the timing of the group can be adjusted as desired. Figure3.3 illustrates how operator grouping
works.

U
se

r t
im

e

Animation time

G1

G2

G3

1 2 3 4 5 6

Figure 3.3: Operator grouping example. First the user has grouped four operators to group G1,
then another four operators to group G2, and finally groups G1 and G2 to a group G3. The groups
can be moved about in the animation time and streched.

3.1. FUNDAMENTAL CONCEPTS 17

An operator group is not limited to any particular layer. A group may span multiple layers.
The group of an operator is presented in one class member that holds the id of the group in
question.

3.1.11 Config

Current editing parameters (profile size, color, material etc.) are stored into config. Config has no
internal logic. It is simply a parameter container that separaters recorders from the WIMP.

WIMP (section3.1.12) stores parameters into the config and recorders (section3.1.14) read
their input values from config.

3.1.12 WIMP

WIMP (Windows, Icons, Menus and Pointers) is the collection of widgets that the user needs
to configure tools and make them work. These widgets include buttons, sliders, menus, color
selectors etc. The WIMP component creates an actual user interface from these basic widgets
and sends stores relevant parameters to the config (section3.1.11). In figure3.4 is one example
of WIMP in use. WIMP is also known as the “kiosk” — it resembles a kiosk with all sorts of
goodies on shelves.

WIMP does not create operators or geometry, but it activates recorders (section3.1.14) that
do the real work. WIMP is a highly uncreative piece of work: At best it mimics 2D GUIs without
using VR in any special way — kind of 2D in VR. Since Config separates WIMP from recorders
the WIMP can be replaced with some more innovative approach is we ever come up with one.

Figure 3.4: The WIMP.

The current Helma WIMP (starting from 5/2004) is configured via an XML-file1-file that has
specifies the widgets, their functions and locations. The user can move the WIMP components
during run-time. As the application exits, the modified WIMP configuration is stored back into
the configuration file.

1For more information on XML (extendible markup language) see www.w3c.org/XML

18 CHAPTER 3. GENERAL APPLICATION STRUCTURE

This highly configurable approach is means that a programmer does not need to do the layout
of the WIMP in code but rather specify the functional parts in an XML file. An advanced user
can then fine-tune the user interface to to his/her liking and the changes are remembered between
sessions.

The WIMP shows a graphic demonstration — demo curve or sphere — of what one could
create with the current tool. This is useful information since one can immediately see what kind
of results can be expected with the current drawing color, profile (for tubes), texture (for particles)
and other parameters without actually drawing anything. See? Effective user interface design :-)

3.1.13 Quick Choices

The main WIMP is large, and using it typically causes abrupt brakes into the workflow. For the
reason we have created a “quick choices” -mini WIMP that is used while drawing.

The quick choices are activated by moving one hand above another. Once activated the user
is offered the WIMP entries most imortant for the tool in use. The quick choices are deactivated
by moving the hand away from its vicinity. Unlike the main WIMP the quick menu does not hide
the user’s graphics.

3.1.14 Recorders

Recorders are classes that turn user input into operators. All recorders inherit a common base
class. Typical recorder takes all parameters that Näprä and magnetic tracker have to offer and
turns them into operators that have the data inside.

A user is does not need to be aware of the recorders — they are part of the application back-
ground magic.

3.1.15 Timeline

All operators exist in a time-line. On the time-line they can be moved, scaled etc.
Time-line exists, but there is no real user interface into it.

3.1.16 Gallery

Gallery is the clip-board of Helma. The user can take the state of the world (or some layer), take
an exact copy of the geometry it and store the geometry into the gallery. Later on the user may
copy objects from the gallery to the world.

3.1.17 Snapshots

For the gallery to be of any use we must be able to get data in there. For this purpose we have a
snapshot feature. Snaphost takes some geometry and makes an independent copy of the geometry.
Besides gallery snaphost are useful when one needs to stop the inheritance of geometry between
frames.

3.2 Support Components

In the previous section the concepts and components that are fundamental to the Helma system
were explored. In the following we will cover the support components that are necessary to the
system, but are not conceptually very important.

3.3. MODES 19

3.2.1 Renderers

Any data needs to be rendered. For this purpose we have separate renderers that traverse all
objects in the world and render them. The most important is the GEE_GlRenderer that is used to
display graphics with the OpenGL. Another one is CollectorRenderer.

The collector is a fake renderer that also traverses the world, but instead of rendering anything,
it stores all objects to two lists (one for solids, and one for transparencies). These lists are then
rendered by GlRenderer (solids front-to-back and transparencies back-to-front).

See also section11.11if you want to understand how rendering really happens.

3.2.2 OpenGL Data (GlData)

Helma uses plenty of OpenGL resources — textures, display lists, various renderers etc. These
resources are represented by a series of objects that are packed into one GlData packet. These
packets are thread-safe.

3.2.3 GEE_Engine

This is simple utility component that manages world and the related operator manager.

3.2.4 Crystal::Engine

This is a large object that knows how to run WIMP, Config, Recorders and GEE_Engine.

3.2.5 Different Applications (Qt and VR Juggler)

There are two different application hosts that can run Crystal::Engine. One is a Qt version that
runs as a normal desktop application and the other is VR Juggler version that runs Helma system
in a Cave.

3.3 Modes

There are two modes in the Helma main application.

3.3.1 Drawing/Animation Mode

Drawing mode is used for crafting the graphics directly. This mode offers direct-manipulation
approach to making graphics.

3.3.2 WIMP Mode

WIMP mode is used to select and configure tools (sprays, magnets, meshes etc.).

3.4 Remarks

By now the reader may have noticed that Helma does not follow the approach of typical animation
applications (Maya, Softimage, Lightwave). In the following we cover some differences:

In many applications there are objects that are first modeled and after modeling animated.
Not so in Helma. The world is a place with some amount of geometry in different forms. The
goemetry can be mutilated from frame to frame in any way. One could say that the world is a
place where material (geometry) that can be crafted with a selection of tools.

20 CHAPTER 3. GENERAL APPLICATION STRUCTURE

In the end it means that Helma by nature produces not models, but a series of instructions
(operators) that create models. Anybody trying to use Helma models in other application will
probably have to export some particular frame/layer combination as a model.

3.5 Pros & Cons

Some of the problematic issues with this architecture:

• Replicating the modeling instructions is difficult. The system should produce exactly the
same animations and models at every single pass. This is not quite as simple as it sounds:
In the real-time modeling phase the system uses slightly dufferent code path compared to
remodeling at later time. While this code is 95% identical the remaining 5% can and does
still cause trouble.

• How to fix buggy operators? Suppose we make a new operator and we find at later stage
that the operator is buggy. If we fix the problem without further ado then any older files
will be displayed with different looks — the new operator will construct geometries that
differ from what they were originally. If a lot of art has been made with a buggy operator
we have little choice but to make work-arounds so that the old files are processed as they
were (with the bugs) and the new files are processed with new, corrected code.

• A complex animation requires huge amounts of computation per frame. It can be difficult to
compute the animation in real-time (and also impossible to precalculate the content of the
animation). This means that the user may be forced to create the animation in slow-motion
and it can be viewed in real-time only by making a movie (avi etc.) out of it.

Some of the positive things about our approach:

• The artist can work with the history of the geometry. Since the original geometry construc-
tion commands are still available one can adjust parameters after making the models, for
example by changing the original texture of particle.

• Unlimited undo and redo are automatically built into the system.

• The same tools are used to create animations and static art. This reduces programming
work, simplifies the application and lowers the artists’ learning curve for making anima-
tions — any tool that is used for static art automatically extends to animation.

• The system is extendable. We can add new geometrical primitives and new operators with
minimal changes to the basic application behavior.

• User interface, graphics algorithms and the file format are decoupled. This enables us to
develop them individually without significant side effects into other areas. In particular
this means that we can test and modify different user interface ideas without breaking the
underlying graphics engine or file formats.

3.6 Usability Pitfalls

In this section we analyze some weak points of the Helma system. In particular there are some
usability considerations that are caused by the above architecture.

3.6.1 Unwanted Operator was Here

When making animations one problem is that an operator may affect geometries we did not want
it to affect. The following example illustrates the problem:

1. User draws a human figure into animation frame 1

3.6. USABILITY PITFALLS 21

2. User then distorts the figure in frame 2

3. User then draws some objects around the figure in frame 1

4. As we go into frame 2 the objects are distorted with the figure

One might suggest that we solve this problem by making a new rule: “An operator should not
affect geometry that was not around when the operator was first used.” The following counter-
example proves that the new rule creates new problems:

1. User draws a fishing net into animation frame 1

2. User then distorts the net in frame 2

3. User then adds more detail to the net

4. As we go into frame 2 the new details should be distorted with the original net

These problems can be overcome with proper use of layers and advance planning. But for impul-
sive non-planned approach they are a clear problem. Possibly the “new rule” should be imple-
mented — although it may eventually make the system more complex to understand (yet another
non-obvious control).

3.6.2 Stretching Animation Events Affects the Outcome

With Helma the user can adjust the timing of the animations. In theory one can stretch time and
the animations will react predictably — they will simply play faster or slower. Unfortunately
there are corner cases when this is not the case. Figure3.5shows a practical example of how this
may happen.

The Helma system is usually ran at a fixed frame-rate. This guarantees that running two passes
over the same animation does has identical results as long as the the animation is not modified.
As one can see here modifiying the timing (strecthing operators in time) may change the results
of the animation.

Currently there is a machanism that should handle most of these situations correctly. The
operator manager does not run the operators direcrlt, but calls operator groups to do the work.
The groups then run their operators in a way that matches the original sequence. This should
keep operators in sync as long as they are within the same operator group.

Whether or not this problem surfaces remains to be seen.

22 CHAPTER 3. GENERAL APPLICATION STRUCTURE

1 2 3

(a) At first the particle is moved by one magnet stroke and then by another.

1 2 3

(b) If run the animation faster the first magnet does all of its work at one step and the second magnet
stroke has no effect.

Figure 3.5: A particle is dragged by by two magnet strokes. Depending on the timing of the
strokes the particle ends in different locations.

Chapter 4

Example Scenarios

In this chapter we go through some scenarios and explain what happens in the Helma system.

4.1 Basic Drawing

Consider the following scenario:

1. User selects red drawing color

2. User selects a polyline tool

3. User draws polyline A

4. User selects blue drawing color

5. User selects a profile tool

6. User draws tube B

This scenario is accomplished with the following user/software actions:

1. User selects red drawing color.

With the WIMP the user specifies some color. The color is stored into the config.

2. User selects a polyline tool.

With the WIMP the user selects a tool. WIMP sets up a new recorder that knows how to
create polylines.

3. User draws polyline A.

When user triggers the beginning of the line the polyline recorder PR creates two opera-
tors: Operator O1 that contains the path information and operator O2 that turns the path
information to a polyline. O1 creates path information object P1 into the world. O2 creates
a polyline object P2 into the world and makes P1 invisible. PR sets the beginning times of
O1 and O2 to the current animation time.

While the line is being drawn PR collects user input data from motion tracker and näprä
and pushes them to O1 that pushes them into the P1. O2 continuously takes data from P1
and moves it into P2.

When the user triggers the end of the line PR sets the end time stamp of O2.

4. User selects blue drawing color.

With the WIMP the user specifies some color. The color is stored into the config.

23

24 CHAPTER 4. EXAMPLE SCENARIOS

5. User selects a profile tool.

With the WIMP the user selects a tool. WIMP sets up a new recorder that knows how to
create triangle meshes.

6. User draws tube B

Creates two operators: Operator O3 that contains the path information. When user triggers
the beginning of the tube the tube recorder TR and operator O4 that turns the path informa-
tion to a triangle mesh. O3 creates path information object P3 into the world. O4 creates a
triangle mesh object P4 into the world and makes P3 invisible. TR sets the beginning times
of O3 and O4 to the current animation time.

While the tube is being drawn TR collects user input data from motion tracker and Näprä
and pushes them to O3 that pushes them into the P3. O4 continuously takes data from P3
and moves it into P4. O4 knows the structure of the mesh and enables the use of triangle
strips for greater performance.

When the user triggers the end of the tube TR sets the end time stamp of O4.

4.2 A Case with Undo

1. User draws tube A

2. User erases some triangles of A

3. User moves some vertices of A

4. User uses undo until we arrive to the situation where A does not exist

This scenario is accomplished with the following user/software actions:

1. User draws tube A

As in previous scenario we get operators O1, O2 and geometry obejcts P1 and P2.

2. User erases some triangles of A

When user triggers the beginning of the erase action the erase recorder ER creates two
operators: Operator O3 that contains the path information and operator O4 that erases
vertices around the path. O3 creates path information object P3 into the world. ER sets the
beginning times of O3 and O4 to the current animation time.

While the user erases vertices ER collects user input data from motion tracker and näprä
and pushes them to O3 that pushes them into the P3. O4 continuously takes data from P3,
seeks all vertices close to path points and erases them.

When the user triggers the end of the tube ER sets the end time stamp of O4.

3. User moves some vertices of A

Identical to the previous step, but instead of erasing vertices the relevant operator moves
vertices.

4. User uses undo until we arrive to the situation where A does not exist

As user triggers a single undo action, one operator is removed from the operator stack.
Finally we end up in a situation where there are no operators in the stack (or rather, our
undo pointer points to the beginning of the operator stack).

Chapter 5

Main Software Components

Helma is based on a number of components. The main components and their dependencies are
illustrated in figure5.1. Many software components are further divided into multiple libraries.

OpenGL

AC

GEE

VEE

Mustajuuri VRJugglerFluid

Linux/IRIX

Crystal

Figure 5.1: Main software components of Helma.

5.1 VEE — Visual Effects Engine

VEE is a second order particle system engine. It is used to calculate particle systems and ren-
der them. The system has been built for fairly high performance, good stability and reasonable
flexibility — a mixture suitable for real-time systems.

VEE has a collection of different particle types and force types. It also includes a full OpenGL
renderer and a minimal Renderman renderer (RIB generator).

VEE takes the vector and matrix classes from Fluid6.1.5. These are renamed to VEE_Vector3,
VEE_Matrix3 etc. to make it possible to migrate to different vector library at some stage. It is
also aesthetically more pleasing to use VEE_Vector3 than Fluid::Vector3 in VEE library. These
renamed vectors and matrices are used directly also in GEE.

VEE is divided into several sub-libraries with the following functionality:

• base — This is a large library that contains plenty of particles and force classes

25

26 CHAPTER 5. MAIN SOFTWARE COMPONENTS

• opengl — Handles the rendering of particles with OpenGL

• effects — Some predifined particle effects. These are largely outdated or really not needed

• extensions — Some non-trivial classes that depend on some libraries that depend on the
“base”

• Qt — Implements a Qt widget set that can be used to visualize VEE and GEE on a desktop
using OpenGL. Depends on the Qt class library by Troll Tech. Also introduces the image
io-plugins needed by the opengl-library.

• test — A simple test application that can run a few simple test particle systems. Largely
obsoleted by the python stuff, but useful for basic troubleshooting.

• python — Wraps most of code in VEE, GEE and Solar into Python. Uses SWIG to generate
the wrapper files.

VEE is written by Tommi Ilmonen, Tuukka Heikura, Marko Myllymaa and Janne Kontkanen.
VEE also includes source from third parties (exact information can be obtained from the web-
site). For more information on VEE see www.tml.hut.fi/˜tilmonen/vee.

5.2 GEE — The Geometry Engine

GEE is the component that is responsible for doing bulk of the modeling and animation work.
GEE uses VEE to handle particles and also borrows primitive classes from VEE (bounding boxes,
color classes etc.).

GEE is basically a modeling/animation engine. It includes basic graphical primitives and
tools (operators) to craft them. The most important primitives are:

• 3D path — hand/tool motion path (GEE_Path3D)

• Triangle mesh — An ordinary triangle mesh with an array of vertices and triangle indices
(GEE_TriangleMesh)

• Lines — A collection of line segments (GEE_Lines3D)

• Particle clouds — A collection of stationary particles (GEE_ParticleObject)

The geometrical primitives are further explained in chapter8.
While the number of geometrical primitives is fairly small there are a number of operators.

Some important operators are:

• Path to triangle mesh conversion (GEE_PathToMesh)

• Path to lines conversion (GEE_PathToLines)

• Path to particle cloud conversion (GEE_PathToParticles)

• Erase primitives around a path (GEE_EraseAroundPath)

• Move vertices/particles around a path (GEE_MoveAroundPath)

• Recolor vertices/particles around a path (GEE_ColorAroundPath)

GEE is organized into two libraries:

• gee — all of the functionality (geometry types, operators), but no rendering

• geegl — OpenGL rendering of the graphics

GEE is distributed along with VEE in the same source package.

5.2.1 Viewer application

The VEE/GEE package contains a viewer application that can be used to view the GEE animation
files with a normal computer. This viewer is typically used to take screenshots of the artwork
made in the VR environment. Figure5.2shows a screeshot of the viewer in use.

5.3. ANIMALAND — THE REAL APPLICATION 27

Figure 5.2: The viewer application shows a piece of higher art (a self-portrait) by Markku Re-
unanen. The figure has 27 geometries, 18885 vertices, 37570 triangles and 1235 particles. In this
case it is running at fairly unimpressive 50.9 frames per second.

5.3 Animaland — The Real Application

Animaland is the component that takes a bunch of low-level libraries and turns them into a 3D
application. The components of Animaland are:

• Crystal::Engine — Manages input devices and animation.

• VR Juggler-app — A VR application that is used by the artists to create art.

• Qt-app — A Qt-based host (GUI) that can be used to run the engine in a normal window.
Useful for debugging and viewing what happened.

5.3.1 Crystal::Engine

Engine is the largest part of Helma. It runs animations with GEE and creates new operators into
GEE from the user input.

5.3.2 VR Juggler-app

VR Juggler app runs the engine as a VR Juggler application. This is a fairly thin wrapper that
uses VR Juggler to manage the wall projection and OpenGL context switches.

5.3.3 Qt-app

A Qt application was developed so that one could test the system in a normal desktop environ-
ment. The Qt app is typically used with pre-recorder user geometry to replay the session. One
can then take screenshots or movies of the animations.

This app is also useful so one can run simple tests with real user geometry wihtout using the
full VR application. A single-threaded Qt app is much easier to debug than a full VR application.
It can also be run under Linux with valgrind (section6.3.4to check memory leaks etc.

28 CHAPTER 5. MAIN SOFTWARE COMPONENTS

5.3.4 Widgets

Crystal includes a number of 3D widgets — sliders, buttons, menus etc. These are embedded into
the engine library. All widgets whare a common base class (Crystal::Widget). Widgets can be
moved with the aid of a scene-graph. This is scene graph is a minimal one and it only includes
the hierarchical transformations for setting the locations of the widgets.

For widgets the input data from Fluid is reconstructed into a very simple format that reminds
us of mouse input data in 2D widget libraries. This is done so that widgets are easier to write and
we do not need to do the conversions at each widget class.

Anybody used to the Qt way of thinking will find striking similarities between Qt wid-
get/object model and Crystal widgets.

Widgets know how to render themselves using OpenGL. Ideally this would not be the case,
but the whole widget library was began as a quick hack and this minor (?) flaw is still with us.

Widgets also know how to store themselves into an XML file and how to retrieve themselves
from an XML file.

Chapter 6

External Components

Helma relies on a collection of external software components. We try to avoid work and use the
work of others — thus this wildly modular approach.

6.1 Compulsory Home-Made Software Components

This section covers Helma softwaer support libraries that have been written in HUT/TML, mostly
by Tommi Ilmonen. These libraries are available in the Internet, but if you really want to use them
then it is usually best to get the soiurces from the CVS repository.

6.1.1 DIVA Libraries

The DIVA (Digital Interactive Virtual Acoustics) research group has lent its name to a few ba-
sic C++ libraries. These are the divabase- and divaio libraries. The divabase library contains
wrappers for the most annoying platform-dependent functions — threawding, networking and
endianness issues. The divaio library has methods for audio and MIDI IO on IRIX and Linux.

The DIVA libraries are distributed with Mustajuuri and Fluid source packages.

6.1.2 Mustajuuri

Mustajuuri is an audio application and a toolkit. It includes everything from simple first-order
IIR filters to complex plugin graphs.

The Mustajuuri development environment is widely used in VEE, GEE, ConfigReader and
Crystal. This basically means that the makefile system always eventually goes to Mustajuuri to
do real work.

In Helma Mustajuuri is used to do the sound synthesis and VBAP panoration for the user
interface.

For more information on mustajuuri see www.tml.hut.fi/˜tilmonen/mustajuuri.

6.1.3 Qt Audio Widget Library — QAWL

QAWL is a fairly small library that provides audio file viewing tools.

• Progressive waveform preview calculator (calculates preview files without freezing the ap-
plication)

• Qt-based waveform display widget

• Qt-based waveform renderer

• OpenGL-based waveform renderer

29

30 CHAPTER 6. EXTERNAL COMPONENTS

The last component is used in Crystal to render the waveform of the sound-track.
QAWL is an almost independent component in Mustajuuri.

6.1.4 AC — Auralization Control

Since Mustajuuuri is typically run on a remote host, a simplified control library was developed.
This is the main purpose of AC. In practice AC knows how to create the control messages needed
by Mustajuuri and sends them over an TCP/IP connection to Mustajuuri. Mustajuuri then receives
the messages and runs sound synthesis accordingly.

AC is distributed with Mustajuuri.

6.1.5 Fluid — Flexible User Input Design

Fluid is library for managing novel input devices such as data gloves and motion trackers. It
includes code that reads the raw data from those devices (basic input) and code that refines the
data (data processing / gesture recognition).

In Helma Fluid is used to handle the input devices and do some basic processing on the data.
Fluid also gives the motion data to the VR Juggler so that VR Juggler can handle the wall

projections correctly.
Fluid is written by Tommi Ilmonen and Janne Kontkanen. For more information on Fluid see

eve.hut.fi/fluid.

6.1.6 ConfigReader

This is a small library that can read basic configuration information from a file (and also save
itself to a file). The file format is extremely simple: Data is organized into named chunks. Inside
chunks are named variables that contain some value. All data is represented in human-readable
ASCII form.

A simple example file with two chunks follows. This is an example of a file that defines the
textures used for the particle systems.

Store {
texturefile = textures.png

}

/* This is a comment. */

Texture-0 {
bitmap = images/noise.jpg
decaypower = 0.8

}

The original configreader flex parser came from Janne Kontkanen. It was then modified by
Tommi Ilmonen and finally rewritten as C++ by Tommi. ConfigReaded is distributed in the same
source package with VEE.

6.1.7 Solar — Simple Object Loader and Renderer

Solar is an oldish small component for loading and rendering 3D models. It was made so that one
could have a background scene in Crystal. At the moment it works well enough, but there is no
need to develop it further since GEE also includes similar functionality.

GEE does not use Solar’s graphic primitives since the data structures in Solar do not lend
themselves too well to dynamic object modeling. Solar does a good job whem the models never
change.

6.2. COMPULSORY OFF-THE-SHELF SOFTWARE COMPONENTS 31

• solar (=solarbase) — The base library, including basic graphic primitives (trianle soups,
meshes etc).

• solarani — Minimal animation features (move object to location, rotate object).

• solarascii — Print out the data of a model.

• solargl — OpenGL renderer for Solar objects.

• solarlwo — Load LightWave models.

• solarperf — Loads many kinds of models by using SGI Performer to do the dirty work.

• solarloaders — Loads files using either solarlwo or solarperf

Solar is distributed with VEE.

6.1.8 CaveProj

CaveProj is a minimal library that loads VR Juggler configuration files and calculates relevant
projection matrices for the projection walls. It was made to replace the projection calculation
code in the VR Juggler software package (section6.2.7).

6.1.9 VR Smuggler

Since VR Juggler is an unnecessarily complex piece of software we wrote a small replace-
ment for the OpenGL display and context management — the VR Smuggler. Both CaveProj
and VR Smuggler are packed into one library that is distributed with the Fluid package (under
fluid/src/smuggler).

6.2 Compulsory Off-the-Shelf Software Components

This section covers components that either link directly to the Helma enviroment (as libraries)
or are compulsory for some other reason. You need these components to compile Helma. By
off-the-shelf components we mean that they can be downloaded from some place in the Internet.

6.2.1 C++ & STL

C++ is our main programming language. Another one is Python (section6.2.5)
STL (Standard Template Library) containers are used all over the place. In particular map,

vector and list classes are often used. The STL algorithms are seldom used.
Helma components need a fairly modern C++ compiler that supports templates, namespaces,

nested classes and RTTI (Run-Time Type Information). The compilers that we are using are gcc
on Linux (starting from gcc version 3.2.0) and MipsPro CC on IRIX (version 7.3.1 seems to be
the best).

6.2.2 OpenGL

Pure OpenGL is used to render the graphics in real-time.

6.2.3 Renderman

VEE includes code to render some objects (simple particles and mesh particles) with Renderman.
This support is incomplete compared to the OpenGL code. GEE lacks Renderman support. It is
possible to create it when needed.

32 CHAPTER 6. EXTERNAL COMPONENTS

6.2.4 Qt

Qt is a GUI-library for UNIX, Palm, Windows and Mac OS X. It contains a widget library and
plenty of utility classes that are useful across platforms (XML, database access, time & date
management, threading).

VEE and GEE have soft dependencies on Qt. This means that Qt is not a critical part of these
components and Qt-related code could be removed without massive rewrites.

VEE has a test bench based on Qt and Helma has a playback engine based on Qt. Besides
the GUI functionality there are other features Helma uses from Qt: The current image (texture)
loader in VEE uses Qt’s image loader code and Qt’s DOM XML parser is used whenever XML
is used.

Note that Qt is the only component with special license issues: It is distributed under a triple
license — GPL, QPL and commercial license. The QPL and GPL are viral licenses — they
require that any work based on Qt must be open source. If proprietary development model is
needed then one can buy the commercial license.

On Windows Qt always requires a commercial license. These are per-developer licenses and
they cost real money.

For more information on Qt see www.trolltech.com.

6.2.5 Python

Python is an object-oriented scripting language. It is used to test and prototype VEE and GEE
components. One can use the VEE and GEE components in a Python shell and write small scripts
that run some test or demonstration.

Python is useful over C++, since one does not need to compile or link code to run tests with
slightly different parameters. There has been some consideration that Python would overtake
more of the functions of C++, but at the moment Python is simply a semi-interactive debugging
test environment.

The C++-to-Python bindings are generated automatically with SWIG (see section6.2.6).
For more information on Python see www.python.org.

6.2.6 SWIG — Simplified Wrapper Interface Generator

SWIG is a tool that wraps C and C++ to a number of target languages. Without SWIG we would
need to do a lot of work to make C++ classes available to Python interpreter. Instead of such
laborious work we give the C++ class definitions to SWIG that creates a huge amount of C++
code that wraps VEE and GEE classes to the Python interpreter. The code is then compiled into
a Python module (a shared library) that we can load into the Python interpreter.

There are deficiencies in SWIG — it cannot parse properly all C++ headers that are relevant
in Helma project. One also needs to careful with the order of including C++ fiels into the wrapper
definitions file. In practice the problems are rare enough to be a minor nuisance compared to the
features that SWIG offers. A fairly new SWIG version (1.3.19 etc.) is needed to generate the
wrappers.

For more information on SWIG see www.swig.org.

6.2.7 VR Juggler

VR Juggler is a large VR-framework. In our work we only use VR Juggler to manage the wall pro-
jections and to manage OpenGL contexts and windows in Helma. Bitter experience has thought
us that VR Juggler is not quite as flexible, simple and easy-to-learn as one would wish. Conse-
quently we try to avoid VR Juggler as much as possible and use other available APIs instead (in
particular Fluid).

For more information on VR Juggler see www.vrjuggler.org.

6.2. COMPULSORY OFF-THE-SHELF SOFTWARE COMPONENTS 33

6.2.8 WML — The Wild Magic Library

Wild Magic Library (WML) is a C++ class library by David Eberly. It has code for 2D and 3D
graphics and geometry handling and a full game engine. VEE and GEE borrow some algorithms
from WML, for example spline and intersection calculations. A minimal version of WML is
included in the VEE source distribution so one does not need to load the library separately when
using VEE or GEE.

Since WML is developed on Linux, Windows and Mac it does not always compile out-of-
the-box on IRIX. Typically some minimal changes need to be made to make it compile and run
properly on IRIX.

We often need to convert vectors and matrices between the Fluid and WML classes. Since the
classes are equivalent we do this with brutal cast operation. For example:

VEE_Vector3 v(1, 2, 3); // VEE_Vector3 = Fluid::Vector3T<float>
Wml::Vector3<float> wv;
wv = * (Wml::Vector3<float> *) &v;

In general we try to hide the use WML and limit its visibility into just the code really needs
WML. This is done to minimize the dependency on WML. WML is only used when it offers
algorithms that we sorely need, but do not want to write ourselves.

We also sometimes take code from WML and put it into Fluid or VEE. In particular many
more complex matrix/vector functions are taken from WML (inversions, rotations etc.).

For more information on WML see www.magic-software.com.

6.2.9 Opcode — Optimized Collision Detection

Opcode is a C++ library for detecting collisions between polygon meshes and other kinds of
geometry. It is included in VEE since we needed an alternative collision detection system for
VEE (besides the plane-grid method).

Opcode is hardly very clean C++, but it works. Some hours of work is needed to make
it compile on IRIX, since the code is such a mess of defines, namespaces and strange include
ordering. Once compiled it seems to be stable and fast.

For more information on Opcode see www.codercorner.com/Opcode.htm.

6.2.10 PLIB — Steve’s Portable Game Library

PLIB is a collection of games-related graphics tools. PLIB includes a scene graph, object man-
agement basic primitives (vectors, matrices etc.) and all sorts of usual 3D game code. For us the
most important component is the OpenGL-based text rendering engine. This is the only compo-
nent that Helma uses from PLIB. The relevant code is located in the PLIB’s Fonts’n’Text (FNT)
-library. FNT-library is used for all OpenGL text display.

For more information on PLIB see plib.sourceforge.net.

6.2.11 Libaudiofile

DIVA audio file IO is based on the libaudiofile library. Libaudiofile was originally made by
SGI, but an open-source implementation (for Linux etc.) was later made by Michael Pruett.
Libaudiofile handles most common audio file formats (waf, aiff). Sometimes if you try open a
file that does not exist libaudiofile crashes — sigh.

For more information on libaudiofile see http://www.68k.org/∼michael/audiofile.

34 CHAPTER 6. EXTERNAL COMPONENTS

6.2.12 System Audio and MIDI Interface

Each operating system has some special audio interface that DIVA IO classes uses. On Linux it
is the OSS and ALSA, and on SGI the libaudio. These need to be configured properly for audio
to work.

For a each new system new interface wrapper classes are typically needed.

6.3 Auxiliary Tools

This section covers tools that are commonly used to maintain and compile the Helma components.

6.3.1 Doxygen and Graphviz

Doxygen is a tool that generates documentation from C/C++ source files based on comments with
special tags. Doxygen can use the “dot”-tool in Graphviz-package to generate fancy graphics to
the documentation.

Doxygen is used for all API-level code documentation in Helma. Unfortunately not all code
is documented fully, but such is life. Fortunately all code is self-documenting — you can simply
start to write code.

For more information see www.doxygen.org and www.research.att.com/sw/tools/graphviz.

6.3.2 CVS — Concurrent Versions System

For source code management we use CVS. CVS is wonderful, multiple developers can write
code in their own trees and then contribute to the central code repository. Each internal Helma
component (Fluid, Mustajuuri, VEE, Crystal) has an independent CVS tree where the project is
stored.

For more information on CVS see www.cvshome.org.

6.3.3 Linux & IRIX

Currently Helma runs on Linux and SGI IRIX. In practice porting to a POSIX-compliant system
should be fairly easy. In the future SGI will probably die or fade (with their outdated MIPS and
IA-64 technologies) while Linux is a growing platform.

6.3.4 Valgrind

From Valgrind’s home page: “Valgrind is a GPL’d system for debugging and profiling x86-Linux
programs. With the tools that come with Valgrind, you can automatically detect many memory
management and threading bugs, avoiding hours of frustrating bug-hunting, making your pro-
grams more stable.”

Valgrind must be one of the most useful open-source application development tools out there.
Anybody doing any development anywhere should check their applications and libraries with
valgrind every once in a while. We use Valgrind every sometimes to check that there are no
memory errors in Helma code base. Having such an accurate error-finder reduces time spent in
bug-hunting.

Valgrind typically spots problems that we cannot fix — errors in system libraries etc. Since
these errors often hide the real problems one can use a suppression file to hide unnecessary warn-
ings. This suppression file — vee.supp — is in the vee/src/python directory.

For more information on Valgrind please see valgrind.kde.org.

6.4. REMARKS ABOUT PORTABILITY 35

6.3.5 GNU Make and Autoconf

We use makefiles for project management. Nobody has said that makefiles are easy to use or fun,
but they work fairly reliably in a multi-platform development environment (at least more reliably
than any other alternative we know).

To complement makefiles we use autoconf to adjust the platform-specific configurations. Au-
toconf is one of the most frightening pieces of software we use. Nobody knows how it works or
what it really does, but it seems to do something.

For more information on these tools see the GNU web site — www.gnu.org.

6.3.6 Performance Profiling Tools

The Helma applications should be as fast as possible — fluent graphics are a critical part of
VR usability. To spot performance bottle-necks one needs tools that can profile the application
behavior.

Gprof is a tool by the GNU project to profile C/C++ applications. One needs to compile all
relevant source code with special compiler flags. Then the application is ran as usual. Upon
exit the application dumps profiling data to a file. The profiling data can be turned into more
human-readable form with a special “gprof”-application. To get even more human-readable rep-
resentation one can use the kprof application (kprof is part of the KDE desktop environment).
The gprof/kprof -system works with GCC and we use it on Linux.

On IRIX one can use applications “pixie”, “ssrun” and “prof” to analyze application perfor-
mance. These are part of the speedshop software package. First one uses pixie to transform any
binary into an instrumentation version. Then we run the application in ssrun (ssrun app.pixie).
Prof then processes the performance data file into more understandable form.

None of these profiling tools work with threaded applications. This is sad — the most critical
applications (VR Juggler-app and Qt-app) cannot be tested with these tools. The most effective
way to use profiling tools is to run them on the viewer application (that uses most of the CPU-
and GPU-intensive code). So far the analysis has shown few if any places for optimizations —
most of the time is spent in OpenGL and there is little we can do to help performance there.

For more information on these profiling tools see respective IRIX/Linux manual pages or try
a Google search.

6.4 Remarks about Portability

Almost all of the above software components are also available on other common platforms:
Windows and Apple OS X. The components that are not instantly available can be ported without
excessive work. Most components also work on other interesting systems: Linux/embedded and
Palm, but porting Helma to such platforms is likely to be a bigger task.

There are some legal and technical caveats in such porting work (e.g. the Qt license on
Windows — section6.2.4), but in principle the system is portable to any reasonable platform. A
reasonable platform is one with full threading-support, normal file- and networking features and
the usual C/C++ development tools.

36 CHAPTER 6. EXTERNAL COMPONENTS

Chapter 7

Application Control Flow

In this section we explain how the VR version of Helma works. To illustrate this topic we go
through a single processing cycle from one rendered frame to the next. That is: the user is in the
Cave and the system shows something on the walls — the graphics on the walls are updated as
quickly as possible. Here one frame means interval between graphics updates.

The key actors in the following scenarios are:

1. VR Juggler (VRJ) — The VR Juggler library

2. Crystal::Engine (CE) — The main object in Helma

3. Helma VR Juggler-application (VRJ-app) — A class that runs CE inside VRJ

4. Helma Qt-application (Qt-app) — A class that runs CE inside Qt

And now one operation cycle (see also figure7.1):

1. In the beginning our application has been loaded into VR Juggler and VR Juggler has the
control.

2. VRJ calls the “update” method of our VRJ-app in the main application thread.

3. The VRJ-app owns a CE object whose “update”-method it calls. Now CE has the control.

4. CE updates the Fluid input and processing layers.

5. Control is given to the WIMP that processes whatever is needed and stores any new param-
eters to the config.

6. Inside WIMP control is given to the active panel.

(a) If user wants to load/save a new file the operation is done immediately.

(b) If user changes parameters, then config is changed.

(c) If new recorder is needed, then the recorder held by CE is updated immediately.

7. CE runs the current recorder. The recorder may put new data into the operators held by
operator manager.

8. CE updates the state of the operator manager with the current time stamp.

9. Operator manager runs the operators that are active, thus causing animation and/or editing
to occur.

10. If geometry is modified or deleted, this is stored for use in the later “draw” function.

11. CE updates the animated particle system.

12. CE calls collector renderer to collect and sort all particles and geometry.

13. CE returns control VRJ-app.

37

38 CHAPTER 7. APPLICATION CONTROL FLOW

14. VRJ-app returns control to VR Juggler.

15. VR Juggler readies the rendering threads that render the graphics.

16. The threads call the “draw” method of VRJ-app.

17. VRJ-app continues the calls to CE and calls its “draw” method in multiple threads. VRJ-
app has OpenGL-context -specific GlData objects that are transmitted to CE.

18. All display lists that point to deleted objects are erased.

19. CE renders all geometry and widgets using the GlData objects. If a geometry has changed
the relevant display list is regenerated.

20. Control returns to VR Juggler and we return to step 1.

Control flow of the Qt application is nearly identical to the VRJ-application. The main dif-
ference is that all operations are done in a single thread and the top level is control is in Qt rather
than VR Juggler. Additionally there are operations that one can do in the Qt GUI (record movies,
take screenshot etc.).

To make the matters more complex we also have VR Smuggler based application. In this case
the logic is basically identical to the VRJ-app.

RendererVEEOperatorConfigWIMPFluidVRJ−AppVRJ
Crystal::Engine Op.Manager

1 2
3

4

5

6

7

8

10
9

11

12

Recorder

13
14

16 17
18

20

15

19

multithreaded

Figure 7.1: Sequence diagram of the control flow.

7.1. ABOUT RENDERING 39

7.1 About Rendering

When the system is in the animation mode rendering is fairly straightforward: The CE collects
the particles and geometries in the “update” -phase and later on renders them.

In the WIMP-mode things are different: We may have visible GEE objects all over the place
(gallery, demo etc.) that should be rendered. The trick we do is that each WIMP component
stores its geometry into the collector renderer in CE at each frame (with proper transformations).

7.2 Hardware & VR Juggler

The architecture above is largely dictated by the kind of a platform that Helma runs on. To make
give the reader a better understanding of how the hardware and software tools limit our design
choices we illustrate the internal structure if the graphics computer and how VR Juggler works
with the graphics hardware.

The graphics computer (or cluster) must be able to render multiple screens simultaneously.
Since a single graphics board cannot run four walls at one time there must be multiple graphics
cards in the computer (in SGI lingo graphics cards are called pipes). Since the cards are separate
entities they may belong to different X-windowing display. Effective use of graphics resources
requires that one pushes OpenGL commands to all available boards in parallel. An alternatively
would be to render one wall at a time — thus running the multiple graphics boards one at a time
and losing plenty of performance.

To be able take full advantage of the underlying hardware VR Juggler uses a separate render-
ing thread for each window. For this reason it must be possible to do multi-threaded render of the
graphics in the application. The VR Juggler master loop looks roughly like this:

1. Run the application logic (virtual method “preFrame”) in one thread.

2. Render the application data (virtual method “render”) with multiple threads.

In general programmers try to avoid threaded programming unless they are forced into it. This
axiom holds here also — the application logic is single-threaded and rendering is parallel due to
hardware requirements.

There are some unnecessary problems with the current system. In particular we would like
to have more direct access to the OpenGL. Unfortunately VR Juggler keeps us away from the
graphics details and we cannot do things (like render some graphics on display Y, take screenshot
and store the screenshot to the file).

So far we have been discussing the topic in terms of a single graphics computer. Running on
a cluster of computers does not affect things radically. Each graphics window is still opened to
some X-windowing display. If the displays are remote, then GLX will transmit the OpenGL calls
transparently across the network.

The only new consideration in the clustering situation is (or should be) the bandwidth of the
network and transmission overhead: The bandwidth of the intra-computer graphics bus (AGP
etc.) is always much higher than the inter-computer communication (Gigabit Ethernet etc.). In
clustering environment one must minimize the amount of geometry sent over the network. This
can be done by using display lists for all stable geometry. GEE already includes support for using
display lists, so cluster support should be relatively easy to implement if we need to use a cluster
at some point in the future.

40 CHAPTER 7. APPLICATION CONTROL FLOW

Chapter 8

Geometrical Primitives

This chapter gives overview of available geometrical primitives and how they work.

8.1 3D Path

This geometrical primitive is often used, but seldom visible. It is a class that holds the motion
data of one hand motion sensor and related Näprä parameters.

3D paths are used to store user input. Other operators then turn the path into other kinds of
geometrical primitives (meshes, lines, particles etc.) and actions (move, rotate, distort, recolor,
retexture etc.).

8.2 Triangle Mesh

Figure 8.1: A triangle mesh made with an I-bar profile.

Triangle mesh class is the usual kind of triangle mesh — there vertices with some parame-
ters (location, normal, color, texture-coordinates) and triangles that are formed by indexing the
vertices. Figure8.1shows an example of a mesh.

A peculiar feature of this triangle mesh is that instead of using normal C-style arrays both
triangles and vertices are stored into STL maps. Thus both vertex and triangle arrays can be
sparse. This data storage approach is used since it offers a reasonable performance in all the
operations that we must perform on the mesh:

• Add vertex

• Erase vertex

• Add triangle

41

42 CHAPTER 8. GEOMETRICAL PRIMITIVES

• Erase triangle

• Find connected vertices

• Find connected triangles

8.3 Line Group

Figure 8.2: A line group.

Polylines are another way to model solids. The width of lines is defined in pixels and they
have no internal structure. A line group may be broken — in that case it is constructed out of
multiple polyline segments.

Internally a line group is composed of a list of vertices. Each vertex has connectivity infor-
mation that marks whether the line continues from vertex n to vertex n+1.

8.4 Particle Cloud

Figure 8.3: A particle cloud. The base path is identical with figure8.2.

Particle clouds are a way to model fuzzy things. Figure8.3shows an example of what a cloud
may look like. The particles have location, color, size, texture, and velocity. In GEE the velocity
is only used to specify how the particle should be aligned.

When writing particles to a file the name of the texture is used. Internally particle textures are
identified with an integer, but since the integer id may change names are used to make the system
more robust and future-proof.

8.5. 2D PROFILE 43

8.5 2D Profile

8.6 Group

Geometries can be grouped together. Once grouped the geometries will behave like one geometry
and they can be moved, scaled and erased together. Once a geometry is inserted into a group
it is marked as invisible and further access to the geometry will take place through the group.
Surprisingly a group can span multiple layers. It is not obvious that this is particularly useful
feature, but since the feature is free (zero coding effort), we use it.

Groups structure can also be displayed: The OpenGL renderer shows a stree structure to show
that some geometries form a group.

8.7 Brush

The brush tool is used to paint multiple strokes of mesh, lines or particles at once. To be precise
the brush tool is not a geometrical primitive — it is internally implemented as an operator that
uses one 3D path to create multiple 3D paths. Thus one can in principle connect any kind of
geometry generator operator to the brush tool and run erasers, magnets etc. with it.

8.8 Remarks

At the moment there are 3 primitives that have some kind of curve/polyline meaning: line groups,
3D path and 2D profile. This feels redundant. In the future we may decide to forget some of these
classes and make do with fewer geometrical primitives.

44 CHAPTER 8. GEOMETRICAL PRIMITIVES

Chapter 9

Features of Helma

This chapter gives a list of the current Helma features. First is the list of GEE-based features.
These use the GEE code base which is a fairly clean system without dirty hacks.

[F1] One can draw 3D lines.

[F2] One can draw triangle mesh (tube) with some profile.

[F3] One can draw/spray particles into the space.

[F4] One can draw at once multiple strokes of tubes, lines and particles with a brush tool.

[F5] One can insert textured rectangles into the world.

[F6] One can set the current drawing color, including RGB, alpha and burn -components

[F7] One can load any predefined textures into the system. This applies to both particle textures
(F 3) and textures for the rectangles (F5).

[F8] One can set the size of the current drawing tool.

[F9] One can set the radius of the current drawing/adjustment tool.

[F10] One can select the profile to be used for meshes.

[F11] One can choose how the profile is rotated when drawing (“motion” or “sensors” -rotations
are available).

[F12] One can select the texture texture to be used for particles.

[F13] One can move the vertex locations of all drawn geometries (= lines, triangle meshes and
particle clouds).

[F14] One can erase the vertices from all drawn geometries.

[F15] One can erase complete geometries.

[F16] One can recolor the vertices of all drawn geometries.

[F17] One can recolor complete geometries.

[F18] One can change the texture of particles.

[F19] One can move geometries without changing their rotation.

[F20] One can move geometries and change their rotation at the same time.

[F21] One can apply uniform scaling to all geometries.

[F22] One can apply non-uniform scaling to all geometries.

[F23] One can turn objects and groups around their center axis.

[F24] One can group geometries. A group behaves like a compound geometry.

[F25] One can ungroup a group.

45

46 CHAPTER 9. FEATURES OF HELMA

[F26] One an copy one gallery item back into the world. The insertion happens at specific time
and layer.

[F27] All edit operations (F1-F 26) can be animated.

[F28] One can control the shape of the 3D tube with näprä. The profile is deformed with with the
current näprä shape.

[F29] Several tools besides the drawing can take their effective radius from näprä.

[F30] All edit operations can be done with either hand.

[F31] All edit operations can be done in parallel, with one hand using one tool and the other hand
using another tool.

[F32] All edit operations can be instant (non-animated).

[F33] All edit operations can be undone and redone.

[F34] When performing an edit operation the relevant geometries are highlighted before the actual
operation is began to let the user know the scope of the operation.

[F35] One can set the background color of the world.

[F36] One can use a background scene.

[F37] One can hide a background scene.

[F38] One can show or hide the group structures in the scene.

[F39] Animations and models can be saved to a file and loaded from a file.

[F40] One can adjust the volume of the WIMP sounds.

[F41] One can play a predefined sound-track along with the animation.

[F42] One can adjust the volume of the sound track.

[F43] One can specify OpenGL light stes from a configuration file.

[F44] One can select the OpenGL light set with the WIMP.

[F45] One an copy the current world state or selection into the Gallery.

[F46] One copy items from the gallery.

[F47] One can set the available textures from a configuration file (any png-image will work).

[F48] The raw user input data (motion tracker data, Näprä, Wand) can be stored to a file and
replayed later.

[F49] The user can navigate in the scene (change the location of the physical space in relation to
the virtual space).

[F50] The user can move the WIMP to any location.

[F51] The user can operate the WIMP with either hand.

[F52] The user can select tool individually for the right and left hand.

[F53] The user can tune the WIMP by changing its layout interactively or via an XML file.

[F54] The system display a demonstration graphic made with the current tool.

[F55] If the user navigates far from the WIMP the WIMP follows the user.

[F56] The user can return to the origin of the world (after getting lost).

[F57] The user can move to the center of the graphics (after the graphics are lost).

[F58] The user can select lights from predefined lighting-sets.

[F59] The user can adjust näprä calibration parameters via the WIMP.

47

There are also features that are coming from the old Crystal. These features need to be updated to
use the new GEE environment. Many of these features are dirty hacks and sorely need a rewrite
or update.

[F60] One can specify the size of a particle over its lifetime.

[F61] One can specify the color of a particle over its lifetime.

[F62] One can specify age-limit of a particle.

[F63] One can set moving particle sources to the scene.

[F64] One can set stationary particle sources to the scene.

[F65] One can set parameters (rate, radius, emission volume, etc.) of the particle sources.

[F66] One can set force fields (blow, vortex, explosion) to the world.

[F67] One can draw triangle meshes with metaballs.

[F68] One can adjust the play-back speed of the animation — starting from zero.

The previous features related to the VR application which is what we usually mean by “Helma
system”. In addition to the VR system we have a desktop application for loading and displaying
animations. This viewer-application has the following features:

[F69] One can load and play animations made with the VR system.

[F70] One can adjust the playback speed.

[F71] One can take screenshots of the OpenGL window contents.

[F72] One can take movies about the animation with motion blur.

There is also a Qt-app for viewing the user actions. This has features similar to the previous
viewer-application but it does not load actual animation files from the hard-disks, but:

[F73] Replay the user input data, resulting in more or less the same modeling and animation
sequences.

48 CHAPTER 9. FEATURES OF HELMA

Chapter 10

Installation & Compilation

It takes some time, effort and UNIX environment variables to compile Helma. The basic proce-
dure is outlined below.

There ase two places to get the source from:

1. The CVS trees of the relevant source packages. These have the newest code and almost
always compile nicely together.

2. The Helma tarballs in the web-site. These packages contain all of our own software: Mus-
tajuuri, Fluid, VEE and Crystal.

10.1 Manual Installation

During the installation all kinds of environment variables are needed. A wise person puts the
requireed environment variables into his/her shell initializations one does not have to set them at
each session.

1. Install Mustajuuri. Get the sources from CVS, configure and compile as instructed in Mus-
tajuuri homepage.

2. Install Fluid. Get the sources from CVS, configure and compile as instructed in Fluid
homepage (or somewhere).

3. Install VEE. Get the sources from CVS, configure and compile as instructed in VEE home-
page. VEE includes GEE and all sorts of third-party stuff that is automatically compiled as
well.

4. Install Crystal (Helma main application). Get the sources from CVS and compile. Config-
uration is not needed.

10.2 Build Scripts

There are also scripts that one can use to do the installation. These scripts are used to make the
release versions of Helma (section11.16). These scripts can be found under the crystal/scripts
directory. Typical way to use them to handle the installation is (for the web-release, on the IRIX
platform):

Uncompress the source package
tar xvfz helma-0.1.0.tgz
Enter the Helma directory
cd helma-0.1.0

49

50 CHAPTER 10. INSTALLATION & COMPILATION

Compile all components (using only one CPU)
zsh compile.sh 1
Start the application with wand control
zsh helma-wand.sh
Start the application with Näprä control
zsh helma.sh

This system has not been tested too much so your mileage may vary. The scripts should work on
IRIX and SUSE Linux 9.1 systems. If the compilation process manages to create a binary beneath
the “crystal/vrjuggler” -directory (under IRIX-6.5, Linux-i686 or similar) then it was successful.

10.3 Compilation Environment

The build environment has a number of targets that the makefiles support. Some of the most
useful ones are:

• all — builds the default targets (typically a shared library out of a collection of sources)

• dep — rebuilds the dependency information and makes sure the compiler won’t regenerate
the information until requested

• don — enables rebuilding of dependency information

• clean — removes object files

• cleanlibs — removes libraries, useful if you need to only relink everything

• dlib — build a dynamic library

• slib — build a static library

• dbin — build an executable with dynamic linkage (usually what we want)

• sbin — build an executable with static linkage (sometimes useful for etecting linker prob-
lems)

These targets can be issued at the source directories or in higher-level directories. The latter will
result in resursive traversal of all required child directories.

Mustajuuri build environment can create one library and/or one executable per directory.
There are a number of useful options for make that one can use (for Mustajuuri, VEE and Helma):

• -k — If some source file cannot be compiled, compile the rest anyhow

• -j n — Parallel compilation, a must on multiprocessor system. Note that the Fluid make
system does not work properly with -j option. Also you may need to do multiple passes to
get everything compiled, but in the end things usually work ok

• OPTIMIZE=FORCE — Force optimization on.

• OPTIMIZE=DEBUG — Force debugging on.

The last two items are used to override directory-specific optimization settings.

Chapter 11

Some Remarks

11.1 VEE_Operator vs. GEE_Operator

Both VEE and GEE contain operator classes. Despite similar naming these are completely dif-
ferent things. GEE operators have been discussed in this document while VEE operators are of
no importance in this discussion.

A programmer using both VEE and GEE should be aware of these different components (and
not get confused by them).

11.2 Configuration Files

The behavior of many Helma’s modules can be configured via configuration files. Below is a list
of configuration files that one can use to modify system behavior. Their exact file formats etc.
can typically only be deduced by looking at comments inside the files and the source code that
reads and interprets the files.

• anima-config — Main configuration file for the Crystal environment

• helma.xui — XML-based Helma VR WIMP specifications

• fluid-config — Fluid input device configurations

• vee-gl.config — VEE particle texture configurations

• eve.vrjfluid.config — VR Juggler configuration for Crystal

11.3 Thread Safety

GEE is not thread safe in the general sense. The data traversal is thread-safe how-ever. This is
done to make is possible to render the scene with multiple threads at the same time.

The rendering threads can work in parallel, but no other action may take place during this
time. In particular one cannot do anything to the animation while rendering is in progress.

11.4 Debug and Error Output

There are special functions for error reporting and error output. These functions are called
XXX_trace, XXX_error and XXX_fatal (where XXX is the name of the module, for example
VEE or GEE). All of these functions work like printf, with one important difference: Unlike
printf they work properly with threads. They also provide us with a few code points where we
can intercept textual output and potentially silence the system without changing the code.

51

52 CHAPTER 11. SOME REMARKS

Each library should have its own functions that output the name of the library before the actual
message.

11.5 The Interplay Between Operators and Geometry

Let us study a practical situation: An operator wants to move some vertices of a geometry object.
How exactly does this happen?

The most direct approach is to write an operator that knows how handle each geometry type
correctly — writing a separate code path for each geometry type. If there are n geometry types
and m operators with slightly different operating principles, then we end up with n∗m different
nearly identical code paths. Thus this approach is not acceptable.

Another method is to create an identical proxy API for each geometry type. Thus the operator
could ask the object for vertex locations and try to modify them. This is probably a reasonable
approach, with two basic problems. 1) The API needs to cover all possible features of all possible
objects — it becomes large and difficult to maintain and use. 2) The use of such an API would
result in several virtual function calls per transaction, decreasing performance.

The third method is to use an intermediate API to communicate the needs of the operation. In
this case we create an abstract mover class that hos only one virtual function for moving vertices.
Any operator that wants to move vertices needs to inherit the mover base class. The geometry
objects in turn have virtual function that has the mover object as an argument. The geometry
object iterates over all of its vertices and passes them to the mover that moves the vertex. The
class structure that is relevant here is illustrated in figure11.1. The drawback of this method is
that we need to specify an API for each operation type (move, delete, select, recolor etc.). If some
operator finds that the API is insufficient then it cannot use the framework. At any rate this is the
method that has been used in Helma.

Inherits Inherits Uses

Mover

MoveAroundPath

Operator

ParticleObject

−virtual bool move(Vec3*)

Figure 11.1: The intermediate API “Mover” that enables any geometry type to communicate with
objects that move vertices. In this example the particle object pushes the locations of its vertices
one at a time to the mover object.

It is of course possible for operator to approach the geometry obejcts directly, for example
a tesselator is probably easiest to make by having an operator that uses dynamic_cast to find
triangle meshes and then has only one code path for this purpose.

At any rate these options are not mutually exlusive — different operation styles can co-exist
and the operation logic can be changed without modifying the system in general or breaking old
code.

11.6. PARTICLES VS. VERTICES 53

11.6 Particles vs. Vertices

In Helma there are geometrical primitives that have similar operations (for example moving). We
typically consider a particle to be conceptually equal to vertex — it has a location, color and other
properties usually associated with vertices. In the case of particle clouds vertex-based operations
are mapped to affect particles.

11.7 Identifiers

In GEE each geometry and data object has a unique identifier (an integer). The identifiers are
allocated from a central repository. Each new object has an id that is larger than the ones before
it. This makes it easy to compare ids and sort operators based on their age.

The ids are used widely to find geometry objects from the world. Instead of a dangerous
pointer (that may point to a deleted object etc.) one uses identifier that is a much more safe way
to get geometry from the world.

There is one issue with identifiers: Merging operators from different files. Since the operators
in two files may be equal we need to modify some operators as prepare to load a merge operators
from the file to the current operator manager. In this situation we remap the ids — all operators
know how report the ids they have and can return them. We then allocate new ids and remap the
old ids to the new ones. This remapping is simple in principle, but in practice it is a powerful
source of bugs.

Besides making file merging possible this method removes any empty space between ids and
shifts them to the lowest possible numbers (one kind of defragmenting of identifier space).

11.8 Coordinates

Helma uses normal right-handed coordinates (like OpenGL). Positive X is to the right, Y is up
and Z is depth.

11.9 Random Numbers

There are many cases where an animation/modeling system needs random numbers. Usually these
random numbers need to be repeatable — a random number generator must produce exactly the
same “random numbers” for each pass.

The only way to guarantee that this can be done is to 1) use own platform-independent non-
changing random number generator (VEE_RandomUniform etc.) and 2) make sure the seed
number does no change over time. Example of how to deal with random numbers can be found
from class GEE_PathToParticles.

11.10 Vector and Matrix Classes

The vector and matrix classes come from Fluid. They are template classes, so one can have float-,
and double vectors in the same application. Due to performance consideration these data types
do not initialize their values in any way. One needs to always set the values of all elements in the
code.

The float versions of the Fluid templates are renamed with typedef using the “VEE” -prefix,
Fluid::Vector3T<float> becomes VEE_Vector3 etc. It is assumed that there won’t be any need
for widespread double-precision arithmetic in near future.

All matrices are row matrices. Since OpenGL uses column matrices we usually transpose the
Fluid matrices before using them with OpenGL.

54 CHAPTER 11. SOME REMARKS

It should be noted that many of the external libraries we use have their own vector and matrix
classes (AC, WML, PLIB, OPCODE). We use a brutal in-place casting to convert between the
data types. For example three floats form a vector with x-, y-, and z -components no matter which
library is in question. Simple C-style type casting is used to convert vector and matrix types
between different libraries.

11.11 Rendering and Transformations

In Helma each geometry has some 4x4 transformation matrix. Groups bring hierarchical trans-
formations to the system. In threory hierarchical transformations are really simple — we simply
push the matrices to OpenGL that does all of the transformations for us.

In reality things look a little different: To be able to render things effectively we need to
use spatial sorting and render all non-transparent objects front-to-back (for minimal refilling in
graphics hardware). For transparent objects we must use back-to-front rendering with strictly
correct order. To be able to do all of this sorting we use a collector renderer that keeps that of the
hierarchical transformations and sorts the geometries based on their distance from the camera,
collector also stores the total transformation matrix of each geometry. In the real rendering phase
we iterate over the two lists (solids and transparencies), apply the total transformation matrix and
render the geometries.

The collector is run once per every frame in the main application logic thread and the render
threads then render the lists in parallel.

The matters are further complicated by the use particles. The particles are technically bill-
boards that face the the camera. The vertex locations need to do be calculated in world-coordinates,
not in the coordinates of the particle cloud. Given that the user may apply an arbitrary transfor-
mation to the cloud, for each particle we must calculate the location of the particle in world
coordinates and make sure we know its velocity (also in world coordinates). For this reason when
collecting the particles for sorting we store the transformation matrix for each particle. In the
rendering phase the matrix is given to the particle renderer that uses it to calculate both location
and velocity of the particle in question.

There are some more nasty details that one needs to keep in mind (light locations, initial world
transformations etc.) — a courageous reader can find the details in the source code.

BTW: All pixels with transparent content should be rendered back-to-front. The best thing
one can do is to sort all triangles by distance, clip the interleaving triangles and then render
them. We do not do this, geometries are sorted by their center points alone (particles are rendered
individually back-to-front).

BTW2: Once graphics hardware starts to support the OpenGL shading language (GLSL)
we can discard at least some of these dirty matrix stack manipulations and also move graphics
calculations from CPU to the GPU.

11.12 Operator Optimizations

Often an operator must perform operations in some part of space — for example change the color
of all vertices in a given region. The brute-force implementation would iterate over every single
vertex that can be found in the world and adjust them. Such operation would have a huge overhead
if there are many vertices that are not affected by the operator.

To solve this problem each geometry and adjustment operator (operators that must adjust
vertex colors and locations) has a pre-calculated bounding box. These bounding-boxes are used
to check if it is at all possible for particular operator and a geometry to intersect. Thus we can
often do early rejection of vertices in geometries that would not be affected by the operator.

There are of course even more effective spatial division techniques for this purpose, but this
one is fairly simple and improves calculation speed by magnitudes.

11.13. CODING STYLE 55

Of course one has to remember that operators usually work in world coordinates and the
geometries can be transformed in the most bizarre ways — make sure you transform your objects
to the world coordinates before doing the calculations.

11.13 Coding Style

There exists a document that describes the HUT/TML coding style, written by Tommi Ilmonen.
That document gives basic outline of the programming style that is used also in the Helma project.
In this section we cover some issues that are specific to Helma.

11.13.1 Prefixes (VEE, GEE, Crystal, Fluid)

Each software component has its own prefix that is attached to all symbols within the library
(classes, typedefs, unions, global functions). This may be a namespace (Crystal, Fluid) or a short
text that is part of the symbol name (VEE, GEE).

In this document we do not use the prefixes unless they are necessary to disambiguate meaning
— (Crystal::Engine vs. GEE_Engine for example).

11.13.2 Functions that Return a Pointer

In VEE, GEE and Crystal there are plenty of functions that return a pointer. For example if you
want to access some particular vertex of a triangle mesh you can get a pointer to the vertex.

By returning a pointer (rather than a reference) we implicitly declare that the function may
fail. If the object you are looking for does not exist, then zero-pointer (NULL) is returned.

11.13.3 Variable Names

In general one can name functions and variables in any way. There are a few conventions that are
meant to narrow down the choices in common situations:

• Use “location” rather than “position” or “translation”.

• When using a pair of variables to indicate some range, use “xxxLow” and “xxxHigh” as
variable names.

• If the same variable is present in different forms (e.g. float and int), use some Hungarian-
style naming — for example “int iMax” and float “fMax”.

• Often one can create unique variable names by abbreviating type names — for example a
variable of type “CleverObfuscatedWekkuli” could be “cow”.

11.13.4 Caching Variables to the Stack

There are many cases in VEE, GEE and Crystal where class member variables are temporarily
stored into the stack (into variable that are local to the function). This is done since access to stack
is always faster than access to some unknown pointer location (and it makes for smaller binaries).
Typically this is not critical, but if a variable is used many times in succession, then it may be
worth it to load it into stack (or register, depending on how the compiler sees the situation).

This optimization applies only to small variables (float, ints and similar). If the variable is
large (takes more memory than a 4x4 matrix) then it is usually best not to use a trick like this.

56 CHAPTER 11. SOME REMARKS

11.13.5 Include Ordering

In C/C++ nearly all source files begin with a series of include declarations. Typically there are
1-30 includes. To make it easy to spot missing (or unneeded) includes the includes are always
sorted with a few simple sorting rules.

1. In an “xxx.C” file the corresponding header xxx.h is always included first.

2. The includes of one library are are grouped together

3. Within the library the files are sorted alphabetically

4. The library-includes are sorted in the following order:

(a) Crystal

(b) GEE

(c) VEE

(d) Solar

(e) Fluid

(f) Mustajuuri

(g) DIVA

(h) Auralization Control

(i) Qt

(j) PLIB

(k) VR Juggler

(l) STL and other C++ headers

(m) ANSI C headers

To get a good example with plenty of includes you can read the file crystal_engine.C.
Sometimes a particular header needs to be included before another can be included. In these

cases we have no choice, but to break our rules until we get a working compilation. Libraries that
tend to cause these roblems are Opcode and VR Juggler.

11.13.6 Float vs. Double

Througout the Helma components we usually use 32-bit floating point numbers rather than 64-
bit numbers (“floats” and “doubles” in C/C++ jargon). This choice is done to reduce memory
consumption which in turn improves performance.

Only when we are truly afraid of inadequate numeric resolution do we use the double preci-
sion. Currently the only place where this is done are the geometry transformation matrices that
are usually expressed in double precision. The higher precision is used since the transformations
are accumulated to the same matrix and any numeric errors can build up in this process.

11.13.7 Performance vs. Safety

In programming it is common that high application performance requires the use of tricks that are
likely to result in more bugs. While both performance and safety are desireable they are eternal
enemies to each other. Thus one must strike a reasonable balance between them. In Helma we
typically favor safety since we do not have an army of coders that could make ultra-fast code.
At the same time there is always certain respect for performance — in the most critical loops
we always try to make things work as fast as possible. In the case of Helma system application
performance (=frame rate, tolerance of large graphic models) is in fact a critical component of
usability. Well, the same could be said of almost all applications on planet earth. . .

11.14. COMMON UTILITY CLASSES 57

11.13.8 Trace Functions and Keyword fname

Helma software components typically print error or debug messages to the console when it is
deemed necessary. The errors are reported via functions that work very much like the “printf”-
function in ANSI-C. These functions are named by the library that they are used in: VEE_error,
VEE_trace, MJ_error, MJ_trace etc.

Nearly always we print (in addition to the debug output) the name of the function that caused
the printout to happen. This enables us to quickly locate the code that is having trouble. If a
function uses debug output more than once we typically store the function name into a local
character string. The name of this variable is always “fname”. Thus fname is in practice a
kayword that is expected to contain the name of the function.

This helps us move code between different modules — the debug function can be copied from
function to function along with the code and the name of the function will be reported correctly
even after the move.

11.13.9 Perfection

Code needs to be good,notperfect.

11.14 Common Utility Classes

11.14.1 Template class VEE_ReferenceObject

This class implements a pointer-sharing approach to managing objects. For example
VEE_ReferenceObject<float> object can be copied and all copies will point to the same actual
variable.

This class is used widely in VEE to minimize memory allocations when some potentially
large object is shared between two higher-level objects.

11.14.2 Template class VEE_RefPtr

This class implements a pointer-sharing approach to managing pointers. This class is useful when
an object of abstract base needs to shared between several higher-level objects. The pointer will
be deleted when the last link to it is broken. In the end this class implements a garbage collecting
system.

This class is used widely in GEE to make sure data in world and operator manager is deleted
at the appropriate moment (and not before).

11.14.3 Template class VEE_ClonablePointer

This class is used to spread objects of abstract type across the system. The template type must
implement “clone”-method that replicates the object. Whenever a copy is made the object is then
cloned. This cloning approach is useful when we need to copy objects without knowing the exact
type of the objects.

This class is used widely in VEE to copy operators.

11.14.4 Class GEE_Debug

GEE_Debug is used to check which parts of the application should produce debugging output.
The user may specify named debugging targets that need debugging. The system in turns checks
what parts produce debug output before printing the output. It is also possible to switch all
debugging on at once.

58 CHAPTER 11. SOME REMARKS

When using this class in your code it is typically not necessary to check the debugging values
at all times. Rather one can cache the debugging information to some static variable at e.g.
constructor and use this information in the future.

11.15 Caveats

In this section we cover some common problems and how to avoid them.

11.15.1 Helma is Slow

In Fluid, Mustajuuri, VEE and Crystal each library has its own optimization flags
(CUSTOMFLAGS in Makefile). For stable libraries this usually means good otpimisations and
for unstable(development libraries we usually use debug flags. When compiling the Helma sys-
tem it is easy to forget this and just use the default flags. As a result you may end up with a
debugging version of many libraries. In particular the GEE libraries may be compiled this way,
resulting in very slow code (up to 10 times slower than fully optimized code).

The solution to this problem is to force the optimizations on as described in section10.

11.15.2 XXX_moc.C Fails to Compile (Qt Problem)

Qt needs a special meta-object compiler (moc) that reads some C++ header and generates some
source code that is needed by the Qt’s signal/slot framework. The generated moc-files are specific
to that Qt version: A moc-file created with Qt version m.n cannot be used to compile against Qt
x.y. Instead the moc-files must be regerated for each Qt version.

This causes some problems if the machines that one wants to use have different Qt versions
— say Qt 3.3.0 in a Debian/Linux system and 3.0.2 in an IRIX system. In this case one cannot
compile Helma source code for both platforms in one directory, but must take two copies of the
source code from CVS and compile them separately.

BTW: For this reason one should never put the moc-files into any CVS repository.

11.15.3 Python Script Crashes

The most usual reason for a Python script to crash is incorrect memory usage. Python does not
really know when an object will be deleted inside C++. As a result Python tries to delete objects
that are already deleted in C++ (or vica versa). Fairly often you must manually tell Python not to
delete objects. This is done by setting the “thisown” -variable of the corresponding Python object
to zero. There are plenty of examples of this in the “vee/src/python” -directory.

A typical special case is that a script fails and returns immediately. The script may then return
before you have managed to set the “thisown” -variable. As a result the script crashes. For this
reason you must check the error output before the crash to see what really happened. Using a
debugger is not going to help at all. Often the bug is easily fixed once you realise that the crash
was caused by script returning prematurely, not some special memory management error.

11.15.4 Operator Fails to do Anything

Sometimes an operator just does not do anything. A common reason for this is that the operator
is on one layer and the geometry you would like to modify is on some other layer. Move both to
the same layer and things start to work.

11.16. DEVELOPMENT AND DEPLOYMENT STRATEGY 59

11.16 Development and Deployment Strategy

There are people who use Helma and there are people who develop Helma. There are machines
where it is used and others where it is developed. By counting the permutations one can see that
there are a number of versions of Helma floating around. Below we outline these versions, and
how they relate to each other. These versions correspond to our work in HUT/TML.

• Helma 1 — This is a stable release version that is used by the artists to make art.

• Helma 2 — This is an alternate stable release version that is used by the artists to make art.
When Helma 1 is in use we can update new code into Helma 2. Then users switch to Helma
2 and Helma 1 can be updated. The version that is in use is modified as little as possible
— preferably not at all. Both Helma 1 and 2 are located on the local filesystem of the main
graphics computer. Hopefully this makes it possible to run them even when the TML NFS1

breaks down (as it often does).

• Helma on a local workstation — A developer typically has an unstable development version
on his Linux-computer. This is where much of the work is done.

• Helma on a shared disk — A developer may also have a version that is located on a shared
filesystem (the “project” directory in TML). This is where we test VR code that cannot be
tested on a desktop machine.

The master source code of all components is located in the CVS repositories. When a new piece
of code is written it is merged into the CVS and then extracted into the other directories. Most of
these versions are located on local disks where one does not get back-ups. Thus all artwork needs
to be copied elsewhere and all important code, resource files etc. need to be pushed into the CVS.

One should commit changes to CVS frequently to minimize the risk of making inconsistent
updates. Inconsistencies are not dangerous, but one gets away with less work by tackling any
problems earlier rather than later.

11.17 Performance Bottleneck Analysis

The Helma system is fairly flexible and offers the user different ways to overload the system:
Depending on the way Helma is used the bottlenecks are in different places.

Pixel fill capacityis heavily used when the user makes particles that are large. In these cases
the GPU has to fill many large polygons.

Vertex processing capacityis heavily used when the user makes meshes that have a huge num-
ber of small polygons. Depending on the system the limit might be 1000 or 1000000 polygons,
but the limit can always be reached.

CPU load can get out of hands when one does some of the nastier edit operations — for
example using a large magnet on a dense mesh may require massive amounts of computation.

Network bandwidthcan be a limiting factor with PC-cluster solutions: If the system cannot
use display lists (highly volatile data sets) then all geometry must be transmitted at each frame.
This demands more bandwidth any local area network (LAN) can offer.

11.18 Sane System Requirements

Helma code assumes certain very basic proerties from the underlying hardware/compiler combi-
nation. It should be difficult to find a system that break these rules:

• Byte is 8 bits

• Signed integers use two’s complement representation

1NFS = Network File System

60 CHAPTER 11. SOME REMARKS

• “short” takes 2 bytes

• “int” takes 4 bytes

• “long” takes 4 or 8 bytes

• “long long” takes 8 bytes

• Floating point numbers use IEEE 754 representation

11.19 The Old Crystal

Helma is built on top of the old Crystal software, originally by Tommi Ilmonen. As a consequence
it inherits a lot of code from that project. Crystal was meant to be a quick hack — something to
be tested and forgotten. This did not happen, instead the application lives on.

In the Helma project significant portions of the old Crystal are erased. The parts to be re-
written include WIMP and the whole animation/modeling engine. The aim is to over time mutate
Crystal to be a clean well-designed application with no dirty hacks. Doing so, we fight the
temptation to always start everything from scratch.

11.20 Antrum

Antrum is a simple 3D drawing application. It was made in HUT by a student group as a pro-
gramming course assignment long before the beginning of the Helma project. Antrum was com-
missioned by Wille Mäkelä and Tommi Ilmonen worked as a technical support contact for the
student group.

Later on there was an Antrum-II project (in another course) that tried to fix the usability
problems in the first Antrum. Unfortunately the Antrum-II contained so many new problems that
it became virtually useless.

Over the years Wille Mäkelä has used Antrum and made a lot of art with it. This experience
is used in Helma to guide the development effort.

None of the Antrum source code is used in Helma. In the Antrum-I project there were seven
students and in Antrum-II some more. In practice majority of the code was written by Sami
Luokkamäki, without whom both projects would have failed miserably. According to Sami, the
Antrum code base is a stinking pile of garbage and useless for future development. We believe
him.

11.21 License Issues

Helma source code is licensed under the Lesser General Public License (LGPL), version 2.1. This
means that the code is usable in open-source and proprietary projects (within the limitations of
the LGPL license). Most support libraries are also released under the LGPL or even more liberal
license terms. The only exception is the Qt library (section6.2.4) that is released under the GPL,
QPL and a commercial license.

To be exact the project personnels’ intellectual property rights are transferred to Helsinki
University of Technology that transfers them to Tekes. The project partners in turn have decided
that the source code should be published in open-source fashion and that LGPL is a fitting license.
Tekes then gives us the right to distribute the source code we have written under the LGPL.

To make matters more complicated one must also keep in mind that most of the home-made
software components have been released before the Helma project under the LGPL. While the
license is the same and some authors are the same (=Tommi Ilmonen) the IPR route is somewhat
different since in these cases the original authors really own their IPR (to the old source code).
Since we are still working on the same source packages a single soure file may have code with

11.21. LICENSE ISSUES 61

only one license (the LGPL), single author (e.g. Tommi Ilmonen), but multiple copyright holders
(Tommi Ilmonen, Tekes etc). The lesson of this convoluted discussion is that if many pieces of
software were not released now and earlier under the LGPL then we might have a problem with
sorting the IPR issues.

For further discussion on GPL, LGPL and other possible licenses see for example the GNU
web site: www.gnu.org/licenses.

62 CHAPTER 11. SOME REMARKS

Chapter 12

GEE File Format

This chapter describes how the GEE file format is built. The exact details of the file format are
not documented here, but rather the approach used. The exact file format can be extrapolated by
looking at the source code :-)

GEE uses a chunk-based binary format1 to store its data. Each object typically saves itself to
a separate chunk in the file. It is hoped that such approach would separate errors in file parsing.

Each object has its own data format that it can read and write. The hosting system does not
really care about how some object stores itself.

File byte-order is little endian.

12.1 Common file-format properties for all kinds of objects

The file is organized into chunks. The chunks begin with an identifier. Identifier is followed
by 32-bit version number. The version number is specific to each object type and useful when
building backwards-compatible readers. After the version number comes the actual data in binary
format.

After the version number comes the actual data. There are two basic ways to write the data:

1. Write the variables to the file in some specific order.

2. Write an identifier tag for each variable and then the actual variable.

The first approach is faster to read/write and uses slightly less disk-space. The second is more
robust — often we can add new variables without any backwards-compatibility issues. Typically
we use 16-bit integers as tags. The variable data follows the tags and a special end-tag marks the
end of a chunk. When reading data the parser code reads one tag/variable pair at a time. Missing
tags are no problem in this case (as long as default values are ok). Given these pros and cons we
usually use the firts approach for the most often repeated low-level data types (polygon vertices
etc.) and the second approach for the main-level objects.

12.2 Typical file format header for main-level objects

Main-level objects are objects that inherit GEE_Geometry or GEE_Operator.
These objects typically print the C++ class name into the beginning of the file as a normal

NULL-terminated string.

1The binary format is a must since any text-format would multiply both file size and read/write-times. At the moment
largest files take more than 100 Mb and having that 100 Mb multiplied would quickly lead to files that do not fit on a
single CD.

63

64 CHAPTER 12. GEE FILE FORMAT

12.3 Typical file format header for low-level objects

Low-level objects are smaller that main-level objects. Often a main-level object contains a number
of low-level objects. Vertices and triangle indices are typical low-level objects.

These objects typically use a specified 32-bit integer to check that the data following in the
stream really represents the object. Usually the objects build the 32-bit integer out of four char-
acters that somehow represent the type. For example GEE_PolygonVertex uses “PGVX” as an
id. The ids should (but do not really have to) be unique for each class. Usually these ids are
constructed with GEE_CONST macro that can be found in header “gee_macros.h”.

Typical abbreviations are:

• DT – Data

• IN – Index

• PG – Polygon

• PR – Particle

• TR – Triangle

• VX – Vertex

12.4 Tools for reading & writing files

GEE_File is the most common stream class for writing files. It is declared in file “gee_io.h”. It
can write most common data types (including vectors and matrices) to the file. It uses highly
specific function names to guarantee that the user really knows what is the data type he/she is
about to write into the file.

Utility class GEE_ParamWriter is of use to anybody making type 2 file IO. It is used to nearly
automatically read/write all sorts of variables to the file.

In header gee_macros.h there is macro that coverts four characters into an 32-bit integer —
GEE_CONST. This macro is widely used to construct headers for low-level objects (section
12.3). To create 16-bit integer tags we use GEE_CONST2.

12.5 The Old Crystal File-Format

This section is here to remind that such a beast does exist. The Crystal file-format is an XML-
based system that more or less directly dumps the contents of Crystal UI panels into the XML
file. Needless to say XML is not the right format for storing large amounts of numeric data.
Currently the Crystal-based animations are stored into such a file and the GEE-based stuff is
stored separately into its own file.

Over time the old Crystal file format will disappear.

Chapter 13

Future Plans

Here is a list of things to be done (in no particular order). These are cursory (not necessarily
trivially understood) descriptions of the nakkis1 we have in front of us.

• Make WIMP widget groups rotatable

• Other cleaning in the WIMP

• Replace all old Crystal functionality with devastating GEE-based code

• Multicolor particle spray (new idea)

• Display selected and nearly selected faces/particles/vertices

• Make file merge work

• Conversion: Particles to metaballs

• Conversion: Metaballs to meshes

• Conversion: Meshes to particles

• Port the VR app to Linux once the new Linux PC -cluster system in HUT/TML is working

• Improve gallery

• More sophisticated undo/redo stack

• In addition to tubes and stripes make more generic polygon meshes (pancakes, balls).

• Now that OpenGL drivers support the OpenGL shading language (GLSL) push particle
billoard calculations into the vertex processors. GLSL is also useful for other purposes.

• Preview when opening files (jpeg image).

• Improve everything

1nakki = task, sausage

65

Index

3D path,41

AC, 25, 53
Animation/User time,14
Antrum,60
Apple OS X,35
AU-coordinates,seeAnimation/User time
Auralization control,30

Bounding boxes,54

C++,31
Cloning,57
Coding style,55
Compilation,49
Components

general structure,13
software,25

Config,17
ConfigReader,30
Configuration,51
Control flow,37
Coordinates,53
Crystal,27

old, 47, 60
CVS,34, 49, 59

Debug,51
Demo curve,18
DIVA, 29
dot-tool,34
Doxygen,34

Error output,51
EVE, 9

Features,45
Fluid, 25, 30
Font rendering,seePLIB

Gallery,18
Garbage collection,57
gcc,31
GEE,25, 26

file format,63

headers,63
properties,63
reading & writing,64

geometrical primitives,26, 41
libraries,26
operators,26

Geometrical primitives,41
Geometry,13, 52

brush,43
groups,16, 43

Geometry generations,16
GLX, 39
GPL,60
Gprof,seeProfiling
Graphics cluster,39
Graphics computer,9, 39
Graphviz,34
GUI, seeWIMP

Hardware,9, 39
Hungarian notation,55

Identifiers,53
Installation,49
Intellectual property rights,60
IRIX, 25, 34

Kprof, seeProfiling

Layers,16
LGPL, 60
libaudiofile,33
Licenses,60
Line group,42
Linux, 10, 25, 34

Make
options,50
targets,50

Matrices,53
Memory leaks,seeValgrind
MipsPro CC,31
Motion capture,9
Mustajuuri,29

66

INDEX 67

Näprä,9

Opcode,33, 53
OpenGL,25, 28, 31

GlData,19
shading language,54

Operator,13, 51, 52
fails, 58
Groups,16
Manager,14

Particle cloud,42
Particles,53
Performance,59
Pixie,seeProfiling
PLIB, 33, 53
Pointers,55
Portability,35
Prefixes,55
Profiling,35
Python,32

script crashes,58

QPL,32
Qt, 32, 58

Public License,seeQPL
Qt-Application,27

Random numbers,53
Recorders,18
Renderers,19
Rendering,54
Renderman,31

SGI,seeGraphics computer
Snapshots,18
Solar,30
Sound,seeMustajuuri
Source code management,seeCVS
Speedshop,seeProfiling
Stack,55
SWIG,32

Tekes,7, 60
Threads,51
Timeline,18
Timing

operators,16
Transformations,54
Triangle mesh,41

Valgrind,34
Variables

caching to stack,55

naming,55
Vectors,53
VEE, 25
VR Juggler,25, 32, 39

Widgets,28
Wild magic library,33, 53
WIMP, 17
Windows,35
WML, seeWild magic library
World, 13

XML, 17, 28, 32

	Introduction
	The Helma People
	About this Document

	Hardware
	EVE
	Motion Tracker
	Näprä
	Graphics Computer
	Peripheral Linux PC

	General Application Structure
	Fundamental Concepts
	Geometry
	World
	Operator
	Operator Manager
	AU-Coordinates
	Persistence of Geometry
	Geometry Generations
	Layers
	Geometry Groups
	Operator Groups
	Config
	WIMP
	Quick Choices
	Recorders
	Timeline
	Gallery
	Snapshots

	Support Components
	Renderers
	OpenGL Data (GlData)
	GEE_Engine
	Crystal::Engine
	Different Applications (Qt and VR Juggler)

	Modes
	Drawing/Animation Mode
	WIMP Mode

	Remarks
	Pros & Cons
	Usability Pitfalls
	Unwanted Operator was Here
	Stretching Animation Events Affects the Outcome

	Example Scenarios
	Basic Drawing
	A Case with Undo

	Main Software Components
	VEE --- Visual Effects Engine
	GEE --- The Geometry Engine
	Viewer application

	Animaland --- The Real Application
	Crystal::Engine
	VR Juggler-app
	Qt-app
	Widgets

	External Components
	Compulsory Home-Made Software Components
	DIVA Libraries
	Mustajuuri
	Qt Audio Widget Library --- QAWL
	AC --- Auralization Control
	Fluid --- Flexible User Input Design
	ConfigReader
	Solar --- Simple Object Loader and Renderer
	CaveProj
	VR Smuggler

	Compulsory Off-the-Shelf Software Components
	C++ & STL
	OpenGL
	Renderman
	Qt
	Python
	SWIG --- Simplified Wrapper Interface Generator
	VR Juggler
	WML --- The Wild Magic Library
	Opcode --- Optimized Collision Detection
	PLIB --- Steve's Portable Game Library
	Libaudiofile
	System Audio and MIDI Interface

	Auxiliary Tools
	Doxygen and Graphviz
	CVS --- Concurrent Versions System
	Linux & IRIX
	Valgrind
	GNU Make and Autoconf
	Performance Profiling Tools

	Remarks about Portability

	Application Control Flow
	About Rendering
	Hardware & VR Juggler

	Geometrical Primitives
	3D Path
	Triangle Mesh
	Line Group
	Particle Cloud
	2D Profile
	Group
	Brush
	Remarks

	Features of Helma
	Installation & Compilation
	Manual Installation
	Build Scripts
	Compilation Environment

	Some Remarks
	VEE_Operator vs. GEE_Operator
	Configuration Files
	Thread Safety
	Debug and Error Output
	The Interplay Between Operators and Geometry
	Particles vs. Vertices
	Identifiers
	Coordinates
	Random Numbers
	Vector and Matrix Classes
	Rendering and Transformations
	Operator Optimizations
	Coding Style
	Prefixes (VEE, GEE, Crystal, Fluid)
	Functions that Return a Pointer
	Variable Names
	Caching Variables to the Stack
	Include Ordering
	Float vs. Double
	Performance vs. Safety
	Trace Functions and Keyword fname
	Perfection

	Common Utility Classes
	Template class VEE_ReferenceObject
	Template class VEE_RefPtr
	Template class VEE_ClonablePointer
	Class GEE_Debug

	Caveats
	Helma is Slow
	XXX_moc.C Fails to Compile (Qt Problem)
	Python Script Crashes
	Operator Fails to do Anything

	Development and Deployment Strategy
	Performance Bottleneck Analysis
	Sane System Requirements
	The Old Crystal
	Antrum
	License Issues

	GEE File Format
	Common file-format properties for all kinds of objects
	Typical file format header for main-level objects
	Typical file format header for low-level objects
	Tools for reading & writing files
	The Old Crystal File-Format

	Future Plans

