
A framework for seamless service interworking in ad-hoc networks

Linda Källström a,1, Simone Leggio b,*, Jukka Manner b, Tommi Mikkonen c,
Kimmo Raatikainen b, Jussi Saarinen c, Sanna Suoranta a, Antti Ylä-Jääski a

a Helsinki University of Technology, TML Laboratory, P.O.Box 5400, FIN-02015, HUT, Finland
b University of Helsinki, Department of Computer Science, P.O. Box 68, FIN-00014, University of Helsinki, Finland

c Tampere University of Technology, Department of Information Technology, P.O.Box 553, FIN-33101, Tampere, Finland

Received 17 June 2005; received in revised form 3 May 2006; accepted 12 May 2006
Available online 8 June 2006

Abstract

Local area wireless networks are becoming commonplace in our everyday lives. It would be beneficial to establish such wireless net-
works in an ad-hoc manner so that they are infrastructure-free. In the current IP networks, various infrastructure elements play cordial
roles, and most of the service-related Internet technologies cannot be deployed in infrastructure-free ad-hoc networks. In this paper, we
develop mechanisms for seamless service interworking in ad-hoc networks: first, finding devices, people and services in an ad-hoc envi-
ronment, and then establishing communications sessions between two or more parties. To guarantee interworking with current networks,
we reuse as much as possible well-known client–server Internet technologies and with minimal changes modify them to be applicable in a
peer-to-peer manner in ad-hoc networks. We have developed methods for service discovery, session management, and security support
that can be used in infrastructure-free ad-hoc networks. We have verified the developed methods with a proof-of-concept implementation
in a WLAN testbed network. We also evaluated the realized implementation, in terms of bandwidth and CPU consumption. We present
the evaluation results to conclude the paper.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Ad-hoc networks; Seamless service interworking; Service discovery; Session management; Authentication and authorization; Security; SIP;
SLP

1. Introduction

Wireless local area connectivity will be supported by
numerous complementary technologies in the near future.
Local area wireless networks have already gained a lot of
momentum through the deployment of WLAN technolo-
gies in enterprises, in public hot-spots, and in homes.
Another popular short-range wireless technology is
Bluetooth, which is deployed in mobile handheld devices
and laptops. Ad-hoc networking without the need for cen-
tralized servers provides a highly potential prospect for
new types of communication scenarios. In this paper, we
address issues that are common challenges to all local area

wireless ad-hoc networks in order to support seamless ser-
vice interworking. We argue that the current technologies
as such are not mature enough for commercial level
deployment for ordinary consumers.

The end-user perspective must be emphasized when we
aim to provide services in new communication environ-
ments like wireless local area ad-hoc networks. In order
to make ad-hoc network communication environments
appealing for consumers, an easy-to-use user experience
must be supported. The technical details, e.g., complexities
in configuring the systems, must be hidden from the end-
users. This is a major challenge, since none of the currently
available technical solutions is mature enough as such for
building a complete system. The solutions developed here
provide an easy-to-use user experience for utilizing services
in ad-hoc environments. The use-cases that our system
supports include, for example, confidential information

0140-3664/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.comcom.2006.05.003

* Corresponding author. Tel.: +358 50 4869494; fax: +358 7180 37290.
E-mail address: simone.leggio@cs.helsinki.fi (S. Leggio).

1 Authors in alphabetical order.

www.elsevier.com/locate/comcom

Computer Communications 29 (2006) 3277–3294

distribution based on group memberships, multiparty gam-
ing sessions with authenticated players, and confidential
multiparty conferencing over unsecured radio networks.
When the users and service providers so wish, the above
services could be executed to anybody without security as
general public services.

Seamless service interworking means the ability to find
devices, people and services available in the ad-hoc envi-
ronment in order to set up communication sessions and
inviting multiple parties into them. In this context, the
framework for service interworking in ad-hoc networks
covers IP-based security, service discovery and session
management. We believe that in the future, IP will be the
most common network layer technology; thus, we focus
on wireless ad-hoc environments providing IP-based net-
work connectivity. We define the ad-hoc environment so
that there are no centralized servers available for either net-
work or service related functionalities. This lack of central-
ized servers creates a fundamental technical challenge in
ad-hoc networks, since most of the techniques used in
today’s IP networks make use of servers, e.g., DHCP and
DNS. There are several proposals for how to enable vari-
ous lower layer techniques in ad-hoc environments; howev-
er, service level interworking in ad-hoc networks has not
been addressed in detail in the literature.

Reusing existing, already adopted, promising technolo-
gies to maximal extent is the fundamental guideline for
our research methodology. Extending the current technol-
ogies with minimal changes is beneficial compared to rein-
venting completely new solutions. Thus, it is more realistic
to penetrate the new ad-hoc marketplace using the com-
mon technology basis, whenever feasible, that has been
used in the infrastructured networks. The same holds for
interworking between different devices and services in ad-
hoc networks. We look for the best candidate technologies
that call for minimum changes in order to fulfill the
requirements in ad-hoc environments. In a way we define
an architectural framework, but we do not develop new ref-
erence architectures. Our solution builds on individual
technologies – mostly further developing Internet Engi-
neering Task Force (IETF) protocols – and our architec-
ture defines how to build a complete functional system
with the enhanced protocols.

In this paper, we develop middleware services to enable
security, service discovery, and session management in
wireless ad-hoc networks. Proof-of-concept prototypes
have been developed and implemented on Linux laptops.
The implemented methods have been combined into a larg-
er prototype system; we have been able to demonstrate
seamless service interworking in 802.11 WLAN ad-hoc net-
works. The resulting system is a distributed system that
does not require centralized servers for any of the
functionalities in wireless ad-hoc networks. Considering
security, we have developed a Public Key Infrastructure
(PKI)-type authentication and authorization (AA) module
that works in a peer-to-peer manner without servers in an
ad-hoc network. We have modified the Service Location

Protocol (SLP) [1] so that it can autonomously provide ser-
vice discovery functionality in ad-hoc networks without
servers. For session management, we have modified the
Session Initiation Protocol (SIP) [2] so that it can be used
in ad-hoc networks in a distributed manner without SIP
proxies, registrars or others servers. The modified SLP
and SIP modules can use the developed security module
in order to authenticate or authorize users and services;
for SLP, confidentiality also is supported. Multiple users
and several service providers can co-exist and communicate
simultaneously in the ad-hoc network, for example, estab-
lishing secured multiparty communication sessions. The
current design and implementation has been tested in an
isolated ad-hoc network. However, the system is designed
in a way that it can be extended to support service inter-
working between ad-hoc networks and the Internet.

The described work is based on research carried out
within the scope of the SESSI (Seamless Service Interwork-
ing in Heterogeneous Mobile and Ad-Hoc Networks) pro-
ject. The project is divided into two phases, where the first
phase is restricted to ad-hoc networking in an isolated net-
work, and the second phase extends the scope to actual
interworking with the Internet. The results presented in this
paper are based on the first phase. The rest of this paper is
structured as follows. Section 2 introduces research chal-
lenges related to service discovery, session management
protocols, and security, together with the necessary back-
ground information. Then, Section 3 introduces the tech-
nology choices we made within the scope of the SESSI
project. Section 4 discusses the way we have integrated
the different software components to form ad-hoc capable
secure session management and service discovery applica-
tions. Section 5 provides an evaluation of the realized
implementation, and Section 6 concludes the paper.

2. Research challenges in ad-hoc networks

This section briefly reviews the state-of-the-art for the
services that form the SESSI service framework. In addi-
tion, it addresses the challenges that must be faced when
trying to deploy these services in a peculiar environment,
such as ad-hoc networks. Related work on the deployment
of security, service discovery, and session management
architectures in ad-hoc networks is presented to conclude
the section.

2.1. Security

As with ad-hoc network research in general, research
into the security issues in the ad-hoc networks is also heav-
ily concentrated on routing. However, there are many
other security challenges than just routing. Frank Stajano
and Ross Anderson have listed that denial of service,
authentication, and naming are the most demanding secu-
rity problems because they differ most from those found in
conventional network environments [3]. In the following,
we describe the security challenges and the current state

3278 L. Källström et al. / Computer Communications 29 (2006) 3277–3294

of the art of security solutions for ad-hoc networks, mainly
from the authentication point of view.

Network security consists of authentication, authoriza-
tion, access control, integrity, confidentiality, and availabil-
ity. The biggest security problem is availability because in
an ad-hoc network denial of service attacks are easy to
execute by totally jamming the radio network by sending
garbage signals over the frequency spectrum. Authentica-
tion and authorization are key components for the access
control that is essential in ad-hoc networks: nodes in the
ad-hoc network offer services to each other thus acting as
service providers. As a consequence, all the nodes should
have some kind of access control mechanism that indicate
which other node (or user) can use, how, and which servic-
es offered by the node. When the other party is authenticat-
ed or its authorization to use the service is verified, it is easy
to agree on the security parameters for the communication:
an encryption method for confidentiality and a signature
method for integrity protection.

Two popular wireless networks in use today are
Bluetooth and Wireless Local Area Network (WLAN).
Bluetooth can interconnect laptop computers, mobile
phones, handheld computers (PDA), and their accessories
such as handsets. Bluetooth has a short radio range, and
its radio uses a frequency hopping mechanism that makes
the jamming of connections and eavesdropping harder
for an attacker [4]. Bluetooth only authorizes or authenti-
cates devices, not users. The device authentication is based
on shared keys set by the users. The security architecture of
Bluetooth provides three levels of access control, that is
access to all, authentication required, and authorization
and authentication required. Access restrictions of services
can be defined separately for each service. The Bluetooth
security architecture is suitable for ad-hoc networks, but
the authentication based on a user that has access to all
devices does not scale for larger coverage networks such
as WLANs.

Similarly to Bluetooth, WLAN security is based on
shared keys between an access point and user devices.
The user device is authenticated with the shared key, and
the communication between the device and the access point
can be encrypted. WLAN security does not provide mutual
authentication: only the user device is authenticated. More-
over, even the authentication is not automatically in use.
The WLAN security mechanisms have several vulnerabili-
ties, described in [5]. Besides, peer-to-peer ad-hoc networks
need mutual authentication that is not provided by the
WLAN security mechanisms.

One good solution for providing ad-hoc type authentica-
tion and confidentiality is Pretty Good Privacy (PGP) [6]:
PGP offers a ‘‘web of trust’’ type of key management for
public cryptographic keys. In PGP, a user signs the key of
another user, and this key can be used both for verifying
the origin and encrypting the content of a message. Every
user has his own storage for keys, and the trustworthiness
of the keys is marked. For example, a key can be marked
to be always trusted. PGP requires either face-to-face

authentication between the users or earlier contact with
some trustworthy user that is known to both of the commu-
nicating peers, but the keys can also be available for only
temporary use. In particular, PGP is mainly targeted for elec-
tronic mail, and it does not provide enough flexibility for
different security services that devices and applications in
an ad-hoc network can offer to each other.

In the last decade, decentralized authorization mecha-
nisms have been developed to offer authorization provided
by the service owner. For example, Simple Public Key
Infrastructure (SPKI) [7] allows the owner of the service
to create certificates that can be further delegated. When
a user wants to use the service, he presents a chain of cer-
tificates that certify his right to use the service. The service
owner verifies the certificate chain. Another example of a
decentralized authorization mechanism is KeyNote [8]. It
works in a similar way allowing trusted third parties to
be used as repositories for the credentials. KeyNote pro-
vides a separate compliance checker that verifies authoriza-
tions. In an ad-hoc network, either a server is needed or
every node should have its own compliance checker. Both
of these mechanisms require a lot of computing power
and can be too heavy for small devices. Some decentralized
authorization systems assume a few trusted powerful devic-
es that perform most of the resource-intense operations
[9,10]. Decentralized authorization mechanisms still
have serious usability problems that make them hard for
users to understand; this is a big problem with ad-hoc net-
work devices that are maintained by the users themselves
[11].

This section has described different security problems
and some solutions proposed to solve them. None of the
solutions are well-suited for an ad-hoc network environ-
ment because devices lack computing power and the envi-
ronment does not provide servers. In Section 3.2, we
present our decentralized solution for authentication and
authorization management in ad-hoc networks.

2.2. Service discovery

Generally, there are two different ways to locate a ser-
vice in an IP-based network: its address is known or its
address is queried for. However, knowing the address is
not an option in an ad-hoc environment, and therefore
we concentrate on the latter. At the level of infrastructure,
support is commonly offered for service discovery. In fact,
there are numerous approaches currently in use in the fixed
Internet, so one would assume that this could be copied to
the ad-hoc environment as well.

Unfortunately, implementations of many service discov-
ery mechanisms are based on centralized and dedicated
high-performance registers or databases that contain infor-
mation regarding several service providers. This scheme is
not suited for an ad-hoc environment, where the resources
of nodes, including, e.g., performance and bandwidth, are
restricted, and no bound roles exist, but all nodes can
assume general roles.

L. Källström et al. / Computer Communications 29 (2006) 3277–3294 3279

Based on the above, a revisited mindset must be adopt-
ed. Provided that nodes can assume several roles even in
parallel (a node acting as a server in one application can
be in the client role in an other application), and change
their roles dynamically, it is up to individual nodes to pro-
vide information about their current roles and services they
potentially provide. For this purpose, several protocols are
available. In the following, we introduce the most relevant
ones within the scope of this paper.

The Service Location Protocol (SLP) [1], is an all-IP
protocol for locating services in the Internet. SLP is a
mature protocol and there are open-source implementa-
tions available. Universal Plug’n’Play (UPnP) [12] is a
protocol for establishing ad-hoc networks. The purpose
of the protocol is to simplify, e.g., home networking by
enabling seamless interworking between PCs, intelligent
appliances, and wireless devices. Web service discovery
(WSD) [13] is a relatively new protocol for locating web
services distributed in a network. However, the standard
seems to be relatively immature, as it has been experiencing
constant evolution. The same applies to available imple-
mentations. Peer-to-peer protocols that operate at the IP-
level are also available, such as JXTA [14]. These protocols
could be used as a basis for service interworking between
ad-hoc networks and the Internet, assuming that the servic-
es of the Internet would rely on the same protocol.

To enable seamless interworking, the selected protocol
should be capable of locating services over a wireless con-
nection, regardless of whether the services are situated in
the Internet or on another peer of an ad-hoc network.
For practical purposes, we also wanted to have a relatively
mature specification and implementation. These were the
reasons that led to the decision to use SLP as the basis
for our work on service discovery presented in Section 3.3.

Service discovery protocols that use a centralized regis-
ter are not generally suitable for use in an ad-hoc environ-
ment. While SLP allows the use of such a register, it is also
possible simply not to install such a service, and only use
parts that are related to service providers and users. This
was our solution to achieve fully distributed operation.

Due to security threats associated with the ad-hoc envi-
ronment presented in Section 2.1, we deemed that SLP’s
original security scheme [1] is insufficient. The original
one way authentication system was replaced by mutual
authentication, real-time timestamps were replaced by
logical timestamps and encryption was added. This was
realized by using our new AA module.

2.3. Session management

Among the various session management and telephony
signaling protocols emerged so far, two are particularly
worth mentioning: the Session Initiation Protocol (SIP)
[2], standardized by the IETF, and H 323, developed by
the International Telecommunication Union (ITU) [15].

The two proposals aim essentially at defining a standard
for telephony signaling, although their design and overall

functionalities are noticeably different. While SIP is text
based, H 323 is binary encoded; this makes the SIP
protocol more flexible and easier to extend. Indeed, the
SIP protocol has been explicitly designed with the possibil-
ity of defining extensions and enhancements to support new
features. This structure gives the possibility to build more
lightweight SIP end devices, which only need to implement
the basic protocol functionalities, and eventually the exten-
sions needed by the application. The price to pay for this
flexibility is the large size of SIP messages. H 323 is binary
encoded and therefore the header overhead is smaller,
which is a beneficial factor in mobile environments.

The specification of the baseline H 323 is extensive; the
protocol was designed with the intent of providing a large
set of telephony related functionalities. Telephony func-
tionalities in H 323 are richer than in SIP and more mature-
ly defined. This is due to the fact that H 323 was initially
designed specifically for IP telephony signaling, and with
the goal of providing services as close as possible to tradi-
tional telephony. SIP session descriptor parameters are
carried in the body of SIP messages; since SIP can trans-
parently carry any kind of body type, it is suitable for a
broader set of applications than H 323. The extensiveness
of H 323 specification has an implication for the complex-
ity of the H 323 client devices. They must in fact support
the whole large set of features of H 323 to be fully compli-
ant, and therefore they are not always the best choice for
implementation in a small, resource constrained, mobile
device.

In the literature, there are several comparisons between
the two protocols. A good survey was presented by
Glassman et al. [16], where the authors briefly describe
the two protocols, compare the services provided and eval-
uate them. The included forecast suggests that the two
standards will coexist, as they provide different functional-
ities. We have chosen to use SIP for our framework due to
its flexibility, advanced maturity level and also because it
has been chosen by 3GPP as the signaling protocol in 3G
networks. This is an important factor, as a potential exten-
sion target for our architecture lies in interworking with
external infrastructured networks, such as the Internet or
3G. Interoperability for session management procedures
is easier if the same protocol is used in both ad-hoc and
infrastructured network environments.

The inherent problem with the deployment of SIP and H
323 in ad-hoc networks is that the protocols strongly rely
on servers. SIP users in particular, must register their pres-
ence in the SIP network to a SIP server, called a registrar.
In the majority of situations, SIP users only know the SIP
user name (address of record, AOR) of the remote party to
contact, but not the exact contact address where they can
be reached. For example, when inviting the SIP user Alice,
whose AOR is sip:alice@example.com, the caller cannot
know whether Alice will pick up the call on her work desk-
top computer, or on her home laptop. This information is
given by Alice to the registrars during her registration oper-
ations. Other SIP entities, the proxy servers, take care of

3280 L. Källström et al. / Computer Communications 29 (2006) 3277–3294

forwarding the message addressed to a particular AOR to
the current contact destination, by accessing the user’s con-
tact information stored in the responsible registrar.

The standard SIP architecture is not feasible for ad-hoc
networks, which are created on demand by end devices,
and where no support from the network is available. As
a result, the SIP protocol cannot be deployed in ad-hoc
networks, due to the lack of centralized servers taking care
of registering SIP users and forwarding messages on their
behalf. In ad-hoc networks, without the support of proxy
servers, SIP users do not have means to reach other users.
Without registrars, SIP users cannot be reached by other
users as there is no entity for them to which communicate
their contact information. Our solution to this problem,
detailed in Section 3.4, is to make SIP operations decentral-
ized and distributed among all the nodes forming the net-
work, so to bypass the need for centralized entities support.

2.4. Other challenges for IP connectivity

Auto-configuration is one of the fundamental challenges
in unmanaged networks, such as ad-hoc networks. Basic
functionalities of IP communication include the allocation
of an IP address, and setting up the IP routing, e.g., allo-
cating a default router and gateways to other networks.
In addition, for an application to be practical, DNS infor-
mation is needed. There has been a lot of very different
work in this area. An IP address can be allocated for each
link separately with IETF-based mechanisms, the stateless
address auto-configuration for IPv4 [17] and IPv6 [18]. Yet,
some research suggests that IP address management should
be tied to the underlying ad-hoc routing protocol [19]. The
IETF MANET working group has only recently started
looking into a common mechanism to perform IP address
allocation in a multi-hop ad-hoc network. A proposal for
address auto-configuration for ad-hoc networks, and a
review of other proposals, can be found in [20].

Gateway discovery for ad-hoc networks has also
received attention. Two distinct mechanisms can be identi-
fied, to tie the discovery to the ad-hoc routing protocol, or
to flood router advertisements into the ad-hoc network and
let the nodes choose the best gateway to use. DNS informa-
tion can be provided with a similar scheme than the address
of the gateway. In our research project, we decided to focus
on the higher layer problems, and rely on existing work in
the area of auto-configuration of the IP connectivity.

2.5. Related work

Several interesting secure service discovery schemes have
been presented. One of these, the one that most closely
resembles our work, is Service Discovery Service (SDS)
[21]. SDS efficiently protects the authenticity and confiden-
tiality of services with a scalable architecture that relies on
a dynamically formed server hierarchy. The solution has
five distinct entities: SDS servers, services, capability man-
agers, certificate authorities and clients. The services may

register themselves to the SDS servers which in turn adver-
tise them to clients. Clients may also make requests for cer-
tain services to the SDS servers. The capability managers
and certificate authorities are used to aid the other entities
in the security implementation. Capability managers help
the network hosts to establish the access control features
while certificate authorities are used to distribute certifi-
cates between nodes. In SDS each service is responsible
for contacting the capability managers and setting up the
capabilities for single users. Communication between cli-
ents and servers is handled with Authenticated Remote
Method Inoculation and the messages are mostly signed,
with timestamps, and encrypted. The service data is stored
in XML format and the searches are made with the XSet
XML engine.

The hierarchical server structure of the SDS can offer a
great deal of scalability, but it fits poorly in ad-hoc net-
works since a dynamic hierarchy would be infeasible for
nodes in the ad-hoc environment to uphold. Inside the hier-
archy service information flow from one server to another
could also lead to situations where the information on
some servers could be invalid. Our implementation has
no such limitations because it is fully distributed although
this is achieved by preset keys and certificates. The SDS
implementation also relies on the correctness of standard
timestamps. This issue is solved in our implementation by
the use of logical timestamps described in Section 4.1.
The SESSI SD scheme has limited scalability but is howev-
er aimed for notably smaller networks than the SDS.

There is not much work yet done on the decentralized
deployment of SIP. An Internet Draft [22], individual sub-
mission to the IETF SIPPING Working Group, proposes
the decentralization of SIP registration operations by
means of distributed hash tables (DHT). The use of DHTs
removes the need for centralized entities in the SIP archi-
tecture. However, DHTs are not optimized for mobile
ad-hoc networks, as the maintenance operations and the
look-ups related for keeping the DHT update result in a
large amount of SIP messages, which is an undesired situ-
ation in mobile environments.

Other work [23,24] specifically addresses modification to
SIP for deployment in ad-hoc networks. The proposals
share the idea that the exchange of messages is tied to a
specific underlying ad-hoc routing protocol. Our approach
does not impose this strong requirement. Decentralized SIP
requires that messages used to register a newcomer node to
the ad-hoc network are distributed to multiple users at the
same time. In link-local ad-hoc networks, this implies
broadcasting. When decentralized SIP is used in a multi-
hop networks, multicasting is used, and the only require-
ment posed is that nodes use a multicast-capable ad-hoc
routing protocol.

Currently used authentication and authorization (AA)
systems rely heavily on centralized servers. Network service
providers can offer authentication services, but in a pure
ad-hoc network, such network service providers or servers
do not exist; other means are needed for authenticating

L. Källström et al. / Computer Communications 29 (2006) 3277–3294 3281

users. Schemes are proposed for situations where either ser-
vice providers [25] or even the ad-hoc network nodes [26]
have concurrent access to an overlay network, but these
do not address truly infrastructureless environments.
Schemes have also been presented on how to form a chain
of trust to a key [27] or how to use recommendations as the
basis of trust [28].

3. A service framework for ad-hoc networks

This section presents the solution we have envisaged for
deploying the services selected for our framework in ad-hoc
networks. Although in this section they are presented as
independent modules, they are closely related to each
other; their interoperation is discussed in Section 4.

3.1. Architecture of the framework

The SESSI service framework consists of three layers:
connectivity services, infrastructural services, and generic
services (Fig. 1). Each layer is further divided into modules.
Each module may use the functionality of layers that are
located under it and of the modules that are at the same
layer with it.

Connectivity services are the lowest layer of the SESSI
framework. They provide IP connectivity within the ad-
hoc network and possibly connectivity to external net-
works for other parts of the SESSI framework. In the first
phase of the SESSI project, the main focus was in develop-
ing the infrastructural services shown in the shaded boxes
in Fig. 1. The second phase will extend the framework to
connectivity services, where the focus is placed on the inter-
operability with external infrastructured networks.

Infrastructural services form the core of the SESSI
framework. They provide an abstraction layer for the
generic services on top of the connectivity services. Our
framework aims at providing a seamless way to provide a
connectivity-independent way for locating, setting up,
and accessing services. The AA module located in this layer
forms an exception to other modules. It can be accessed
from all parts of the framework. Generic services are the
top layer of the SESSI framework. They are the actual ser-
vices offered to (or by) users. Examples of generic services
include instant messaging and presence applications,
games, and multiparty conferencing. The design of the
SESSI framework has been optimized for use in small

link-local ad-hoc networks, where all the nodes are on
the same link, and the size is restricted to at most a few
hundred nodes. The reasons motivating this choice are that
we have identified several use cases for our framework.
Most of them could be well-addressed by a link-local ad-
hoc network, without the need for the introduction of addi-
tional complexity due to IP routing issues.

Most of ad-hoc networking related research addresses
big ad-hoc networks with several hundreds of nodes or
even thousands. We believe that such big ad-hoc networks
cannot be realistically deployed, at least with current tech-
nologies2. The same concept about the realistic sizes of ad-
hoc networks is shared by Tschudin et al. [29]. They feel
that simulation-based studies for very big ad-hoc networks
are not the right approach to achieve wide deployment of
ad-hoc networks in real life. Their claim is that, although
simulation-based research on ad-hoc networks has pro-
duced noticeable results, there is the need to carry out
experiments addressing realistic MANETs deployment sce-
narios. Such realistic scenarios are deemed to be small-
scaled ad-hoc networks, with a few dozen nodes (typically,
around 20) at most, two or three hops away from each
other. In addition to this, we believe that, when possible,
exploiting link-local environments must be carefully con-
sidered. A few dozen nodes directly connected at the link
layer would form realistic ad-hoc network, where the nodes
are relieved from routing operations, suffering therefore
from less power consumption. Increased batteries lives
and bandwidth availability due to the absence of routing
control messages can be powerful triggers for the commer-
cialization of ad-hoc networking.

For example, an attractive scenario is a meeting or a
classroom, where the speaker shares his slides with the
other participants on their laptops connected in ad-hoc
mode. The secretary types the minutes on a whiteboard,
and all the participants can read them while they are typed.
The session management procedures needed for setting-up
the shared slide show can be deployed with our decentral-
ized version of SIP. Security can be enforced using the
mechanisms defined for our framework.

Similarly, in an Internet cafe customers may discover in
ad-hoc mode other people with a matching profile using

IP Connectivity Gateway

Name services Session Management Service discovery AA
Infrastructural

services

Connectivity
services

Generic
services Chat Multiparty conference On-line Games

Fig. 1. The service layers in the SESSI architecture.

2 This reasoning does not apply to sensor networks, where we do
acknowledge that sizes of thousands of nodes constitute an effective use
case.

3282 L. Källström et al. / Computer Communications 29 (2006) 3277–3294

SLP, and begin a SIP-based instant messaging session with
them. Communication would be free of charge, as it does
not utilize any infrastructure. An access point would only
be utilized for communication with nodes in the Internet,
and would not be overloaded by internal communication.
The decentralized approach also suits other kinds of net-
work environments where the link-local paradigm holds,
not just ad-hoc networks. For example, the SESSI architec-
ture can be deployed in the machines forming a LAN in a
university campus. SESSI operations would be performed
in a decentralized way and servers would only be used
for operations that cannot be made decentralized (e.g.,
mail server). The difference between these scenarios is that,
unlike ad-hoc networks, a LAN environment can support
several hundred of nodes.

Although the main target network environment is small
link-local ad-hoc networks, our framework can also be
deployed in bigger ad-hoc networks, where nodes are
multiple hops away from each other. In link-local ad-hoc
networks messages are distributed to all the users in the
network by broadcasting them. Broadcasting is an efficient
trade-off between complexity of the solution and band-
width consumption, given the target network environment
of relatively small ad-hoc networks.

In multi-hop ad-hoc networks messages can be distrib-
uted to a large set of users with multicast. The only require-
ment in our framework is the presence of an underlying
multicast ad-hoc routing protocol. All the nodes interested
in a particular service register to its well-known multicast
address (e.g., for SIP it is 224.0.1.75) to receive messages.
Multicast can also be deployed in smaller link-local ad-
hoc networks; in this case, however, broadcasting messages
is still a preferable solution due to its simplicity. In link-
local networks, all the nodes receive any messages sent,
regardless of the fact that it is unicast or multicast. The
IP address determines which nodes will process it at higher
layers. Keeping the solution simple is especially important
in networks that may be formed by small devices, which
have limited computing capabilities.

3.2. The SESSI authentication and authorization module

The SESSI Authentication and Authorization (AA)
Module has two main functions. First, it provides a creden-
tial repository where all authentication and authorization
credentials and public cryptographic keys are stored in a
hierarchical structure. Second, it offers a two-way access
control mechanism for managing services that can be
offered to a user or services that can be provided by the
user. Every device in a SESSI enabled ad-hoc network
has its own AA module.

In the AA module, users are authenticated by a base
public key. An external trusted third party can provide a
certificate (here called the base certificate) that binds the
base public key to the user’s identity. However, this is
not required: the base certificate can also be self-signed
by the user. This enables services that do not require

authentication of the user but only verify the user’s autho-
rization because the user can create arbitrary base certifi-
cates. In addition, the AA module supports groups that
are handled similarly to users when making access control
decisions or storing service specific credentials. Every
group has a base public key and a base certificate that is
defined by a group administrator.

Because services require different kinds of credentials,
the AA module allows the use of application specific certif-
icates and keys. They are bound to a base certificate of a
user as Fig. 2 illustrates. The certificates are presented by
the user to whom they belong and the user must digitally
sign the application specific certificates with the base key.
Also, symmetric cryptographic keys can be used, and they
are handled similarly to public keys. This way the creden-
tials form a hierarchy where the base certificate is the root
and application specific certificates are the leafs. Applica-
tions can identify the used key since the certificates contain
application specific information such as the security
parameter indexes of SLP or the SIP user names.

The AA module offers a similar access control mecha-
nism as Bluetooth by defining three levels of security: no
security required, authorization or authentication required,
and authorization and confidentiality required. In addition
to these three levels, the AA module has a device specific
security level. It can be used when a user enters an untrust-
worthy environment and wants a higher security for all the
services. The user changes the device specific level to higher
one, and lower service specific access levels are overruled.

However, an ad-hoc network environment requires
modifications to the traditional access control. In a peer-
to-peer environment where all nodes offer services to each
other, in addition to checking that a user is allowed to
use a service, the user must check that the service provider
can offer the service to his device. In the AA module, the
access control entries have six fields: whether the user acts
as himself or herself or as the member of a specific group,
subject base key, service ID, security level required, validity
period, and use or serve. The last field indicates if the ser-
vice is used by the subject or if it is offered by the subject.

The AA Module consists of five internal parts as is
shown in Fig. 3. The credentials are stored in an SQL data-
base. On top of the database, the AA manager handles the
access control lists and provides functions to manage user
credentials and actions like signing, verifying and encrypt-
ing the messages. A separate Crypto Service Module pro-
vides the cryptographic functions used in the AA
Module. It is based on the OpenSSL library3. The service
location and session management modules, as well as other
SESSI-enabled services and applications, can use the AA
module through an API. For the user, the AA module pro-
vides a graphical user interface that can be used to add new
credentials or to modify already existing ones.

3 http://www.openssl.org/

L. Källström et al. / Computer Communications 29 (2006) 3277–3294 3283

3.3. SESSISLP

In this section, we give an overview of the Service Loca-
tion Protocol, while we present modifications made to it in
Section 4.1. The SLP protocol is based on three types of
entities, which are listed below.

• User agent (UA) is an element that can be associated
with a user of a service.

• Directory agent (DA) is an element that acts as a regis-
try from which addresses of different services can be
queried.

• Service agent (SA) is an element that provides actual
services to users.

Of these, user agents can query for services, and directo-
ry and service agents can advertise them and respond to
UAs queries. SAs may also register services to DAs.

As already discussed in Section 2.2, the use of a central-
ized registry is not feasible for an ad-hoc environment.
Therefore, the DA element was eliminated from the archi-
tecture, as if one would be included, all nodes would be
bound to acquire information regarding services from it
[1]. Instead, due to the dynamic environment of our

framework, we wanted that service providers advertise ser-
vices themselves. A similar yet ad-hoc enabled solution is to
combine a UA and SA in a node, and let the node advertise
services of other nodes as well. However, this option was
not considered any further. In our future research, we plan
to consider an option where such a special node would be
used to provide Internet connectivity to the other nodes in
the ad-hoc network.

Another issue that needs reconsideration is security. In
plain SLP, it is possible to authenticate the SA which orig-
inally created a URL that expresses the location of a ser-
vice or an attribute list of a service. However, there are
no feasible means to ensure the integrity protection of
entire messages. The SLP specification [1] suggests the
use of Encapsulating Security Payload (ESP) to provide
encryption, but due to complexity of IPSec [30], which is
utilized in this approach, we have chosen not to use it. In
plain SLP each signature is accompanied by a timestamp,
which marks the time the authentication expires and a
security parameter index (SPI). Timestamps are calculated
in seconds and are not suitable for ad-hoc environments, as
they would require clock synchronization among all the ad-
hoc nodes. The SPIs are used to pass information from SA
to UA about the keying material, key length, and the
algorithm needed for signature verification.

In plain SLP the security features related to URLs and
attribute lists are encapsulated in the SLP authentication
block illustrated in Fig. 4.

For the ad-hoc environment, this leaves the following
challenges to be tackled:

• No means to connect more advanced security properties
to a service,

• sufficient integrity protection against tampering cannot
be established with original signatures,

• no authentication of UA to SA,
• no available clock synchronization required by the origi-

nal timestamping,
• no secured means to bind messages to a certain request-

reply message sequence.

Certificate
Authority

User’s
base key

certifies

certifies

User’s
other
credentials

certifies

certifies

Group
manager

Group’s
base key

Group’s
other
credentials

Fig. 2. A user or group certifies its application-specific keys with its base key.

 API
 SESSI AA

AA Manager Crypto Module

SQL Database

GUI

Fig. 3. Software architecture for the AA module.

3284 L. Källström et al. / Computer Communications 29 (2006) 3277–3294

In order to provide an answer to the above challenges,
integration between service discovery and security features
are needed. A detailed description can be found in Section
4.1.

The architecture of the service discovery subsystem is
illustrated in Fig. 5. The generic SD API provides an inter-
face for external applications and enables changing of the
used service discovery protocol. The API is in fact non-
SLP specific. The API uses the Locator module for service
searching and the Advertiser module for service advertis-
ing. The Locator and Advertiser interact with each other
through sockets to allow timestamp caching while relying
on the SESSI AA API to provide the security features.

3.4. Decentralized SIP

The solution we envisaged for making SIP decentralized
is to add to each end node limited SIP proxy and registrar
server capabilities. The end node exploits SIP client fea-
tures as well in the same device. All the end nodes have

the functionalities for registering their contact information
in the ad-hoc network and acquiring that of the other users
in the network. This approach enables decentralized SIP
sessions. We refer to this solution as decentralized SIP or
dSIP. The main design goal of dSIP is that native SIP
application can be used in ad-hoc networks as well without
need for modification. A more detailed description of dSIP
can be found in [31].

SIP operations in ad-hoc networks consist of two steps:
user discovery or registration, and session management.
User discovery refers to the necessity of acquiring the
Address of Records (AOR) of SIP users in the network,
together with the IP addresses where they can be contacted.
The association between a SIP user name, the AOR, and
the contact IP address is called binding. Discovering the
AOR of users in an ad-hoc network is important as usually
there is no previous knowledge of the users that are online.
In infrastructured networks the information on connected
users is provided by servers; in ad-hoc networks, the list
of online users must be retrieved by the end nodes
themselves.

After gaining connectivity in the ad-hoc network, nodes
can register by broadcasting (or multicasting) a SIP REG-
ISTER message. The REGISTER message contains the
user name and the contact IP address of the registering
user. The nodes that receive the message store the binding
of the registering user and can send a reply specifically
addressed to the registering user, since they know his con-
tact IP address from the REGISTER. The decision on
whether to reply to a REGISTER message is based on
local policies; for example, a user may wish to reply only
to registration messages sent by users in his contact list.
The reply message, a SIP 200 OK response, contains the
AOR and the IP address of the replying user and allows
the registering node to retrieve the bindings of the replying
nodes.

Session management procedures follow the standard
SIP approach, where an inviting user agent forwards its
messages to a proxy server, which will take care of

Fig. 4. Standard SLP authentication block.

SESSI AA API

Advertiser

Generic SD API

Application

Locator

Fig. 5. Modules used in service discovery.

L. Källström et al. / Computer Communications 29 (2006) 3277–3294 3285

forwarding them to the right recipient. The only difference
in dSIP is that the outbound proxy server is colocated in
the same node as the user agent. The list of available ad-
hoc users is stored at the server. Since the user agent needs
the AOR of the contacting user to successfully begin a SIP
session, we have enabled the possibility for the user agent
to request the list of available users from the local server.
This exchange, and in general all communication between
user agent and local server, is done using SIP messages.
Since user agent and local server are not bound by any
function call, we obtain independence between the two
modules.

A decentralized SIP node has two main modules: the
user agent module, with the functionalities of a baseline
SIP user agent enhanced for operations in ad-hoc network,
and the server module. The two modules are independent
of each other, and are logically unaware of the fact that
they are running on the same node; they communicate only
with SIP messages sent through the loopback address. In
other words, the server module acts as an outbound proxy
and registrar server for the user agent module.

This scheme extends but does not substitute baseline SIP
functionalities; a decentralized SIP enabled node can be
used as a standard SIP user agent for operations in infra-
structured networks. In this case, the communication
between the user agent and the external proxy server is car-
ried out simply by sending messages to the address of the
external server, rather than to the loopback address.

Fig. 6 shows the modules that form the architecture of
decentralized SIP. The shaded modules are those that
would only be present in a standard SIP node. The low
level SIP library provides basic SIP functionalities like mes-
sage parsing or syntax checks. This library is utilized by the
two upper modules, the user agent and the server modules,
whose features have already been mentioned.

The cache is used by the server to store information
about the users currently in the ad-hoc network. The ses-
sion management (SM) API is a standard SIP API that
any application can use to exploit SIP user agent function-
alities. The SM API is further enhanced for enabling

operations in ad-hoc networks. For example, the SM
API, based on whether the operations are in ad-hoc net-
works or not, passes to the user agent module the correct
address of the registrar/proxy server to use. In ad-hoc net-
works, the SM module instructs the user agent to use the
server running at the address 127.0.0.1. Otherwise it gives
the IP address of the preconfigured registrar/outbound
proxy server. The enhancements made to the SM API
allow native SIP applications to be deployed in ad-hoc
networks.

4. Seamless service interworking

The previous section presented the three components of
our service architecture. In this section, we discuss the
interoperability of the components, i.e., how the AA mod-
ule provides security to the SLP and SIP protocols, and
how SLP can be used to distribute the bindings of SIP
users.

4.1. Secure service discovery

For the purposes of service discovery, we have identified
two new security levels, as defined in Section 3.2, which are
authentication and confidentiality. These have been imple-
mented with two SLP application specific key pairs; one is
used for authentication, and the other for confidential com-
munication. When aiming at any of these levels, the user is
assumed to distribute his public keys before authentication
or confidential communication. To encapsulate support for
this in SLP messages, the extensions presented in Fig. 7
have been introduced.

To answer to the security challenges discussed in Section
2.2, we have defined the following solutions. To establish a
connection between a single service and more advanced
security properties, we use the abstract part of the original
SLP service type as a security identifier. As a consequence,
service type requests were discarded, as they fit poorly with
the new security scheme. Problems related to authentica-
tion and integrity were solved by replacing the original
SLP authentication block (Fig. 4) with an improved struc-
ture (Fig. 8) with the following contents: first, the SPI is
replaced with the sender’s and group’s identifiers. Second,
the original authentication block field is replaced by a sig-
nature calculated over the entire message including the
receiver’s identifier. Third, a real-time time stamping sys-
tem was replaced with logical timestamps, where each node
caches a number of messages from different peers and uses
their logical timestamps to determine whether a received
message is new or replicated. The final issue, secured means
to bind messages to sequences, was implemented by adding
the receiver’s identifier to each message addressed to a par-
ticular node. This, together with a XID number, that is the
same for each request-reply pair, and message integrity
protection results in a straightforward yet improved way
for clients to manage sequences. These security enhance-
ments are also discussed in [32].

Low level SIP library

SIP Server Cache

API
Session Management

Application

User Agent

Fig. 6. Software Architecture for decentralized SIP.

3286 L. Källström et al. / Computer Communications 29 (2006) 3277–3294

4.2. SIP user discovery with SLP

Section 3.4 described how decentralized SIP can be used
in ad-hoc networks to perform user discovery. An alterna-
tive approach for user discovery leverages the presence of a
service discovery framework. The interworking between
decentralized SIP and SLP in order to discover users’ iden-
tities in the ad-hoc network is therefore natural. This
approach is referred to as SLP-aided SIP, or sSIP.

Instead of broadcasting a SIP REGISTER message
upon connection to the ad-hoc network, in sSIP a device
uses SLP to query for all the nodes running the service
SIP and the service attribute AOR. All the nodes that have
locally registered the service SIP with SLP reply by sending
the address where the requested service type is available,
that is, their IP address and the user’s AOR as SLP service
attribute. The reply from the other nodes allows the server
module to construct the bindings of the users in the
network. Once the bindings have been retrieved, the

operations of dSIP and sSIP coincide, and session manage-
ment is handled in a similar way.

User discovery with SLP has some advantages over
decentralized SIP: the most important is that SLP con-
sumes less bandwidth than SIP, since its messages are bina-
ry encoded. Section 5 provides an analysis of the
bandwidth consumption caused by the two approaches.
A disadvantage of using a service discovery framework lies
in interoperability issues. If all the devices in the ad-hoc
network use the same service discovery framework, then
it is possible to retrieve the bindings of all the users; other-
wise, if devices use different and incompatible service dis-
covery frameworks, retrieval of users’ bindings may be
impossible.

A major difference between dSIP and sSIP is that with
broadcast REGISTER, receiving nodes can store the
bindings of the registering user. When an SLP query
for the service ‘‘SIP’’ is received, nodes reply but cannot
store the bindings of the registering user. This implies

Fig. 7. Message structures at authentication and confidentiality levels.

Fig. 8. Improved SLP authentication block.

L. Källström et al. / Computer Communications 29 (2006) 3277–3294 3287

that when SLP is used, new nodes in the network get to
know the bindings of older nodes, but the reverse does
not hold.

There are two solutions for this problem: one is to
refresh periodically the broadcast SLP query for the service
‘‘SIP’’, so that if new nodes have arrived in the interval
between two refreshes they can communicate the bindings.
Another option is enabling ‘‘SLP Passive Service Discov-
ery’’. This is an extension to the baseline SLP protocol,
which allows nodes entering the network to advertise their
service, by broadcasting an SLP message that contains the
bindings upon connection to the network. The message
contains the type of message advertised (‘‘SIP’’ in this
case), the address where it is reachable and the user’s
AOR as attributes. The scheme is called passive, as nodes
passively receive information about active services in the
network directly from the service providers. Passive service
discovery is a possible subject of future work.

4.3. Secure SIP

The SIP specification, and its extensions, take several
security mechanisms into consideration. Some of these
are not applicable to the ad-hoc environment. First of all,
mechanisms based solely on pairwise shared symmetric
keys are not applicable since they do not support broadcast
messages. This rules out the otherwise popular Digest
authentication [33] mechanism. Further, Transport Layer
Security (TLS) [34] cannot be used since it relies on TCP,
which does not support the broadcast messages that dSIP
uses. S/MIME [35] is a more feasible solution. A major
drawback of S/MIME is that, in order to protect the head-
er’s integrity, the message is tunneled, which remarkably
increases its size. It also increases the risk for message frag-
mentation at lower layers. In our framework, where SIP
runs over UDP, fragmentation of SIP messages should be
avoided, as reconstructing the messages adds unnecessary
complexity.

We have selected a new proposal, Authenticated Identi-
ty [36], where message integrity and authenticity is provid-
ed in a bandwidth-efficient way by adding an asymmetric
signature to the SIP header. We have modified this scheme
to fit our framework. The Authenticated Identity draft
allows UAs to receive SIP requests from entities with which
they have no previous association, and to verify the identity
of the calling user. An identity is defined in this context as
the user name or the AOR of a SIP user.

In this proposal, the sender’s proxy server first authenti-
cates the sender. It then creates a signature over a set of
pre-defined SIP header fields and the body of the request.
The signature is added in a new header field. Another head-
er field indicates a secure URL where the domain certificate
of the proxy server is available. The only addition to the
SIP message are the two new header fields. Since the signa-
ture is smaller than 200 bytes, the integrity of the message
is protected with a reasonable overhead and within each
message.

The ideas presented [36] have been modified to fit the
SESSI framework. Each user has an asymmetric key pair
– a SIP application specific key – and uses it to sign his
or her own messages. This choice is mandated by the fact
that in ad-hoc networks there are no domain servers that
would authenticate users and sign messages on their behalf.
The SESSI framework currently assumes that users willing
to engage in secure communication share each other’s secu-
rity information; in this case, the users possess each other’s
public key certificates. The keys are stored and managed
with the AA module. The AA module is also used for
access control and security level decisions, as described
earlier in this paper.

Since all the authorized users possess the corresponding
certificate, they can verify the authenticity of the messages.
With this approach, nodes can sign the broadcast REGIS-
TER, receive and verify signed 200 OK messages, and
ignore messages that do not contain the authentication
string. If a non-signed REGISTER is received, and the
security level for that node requires authentication, then
the node can reply with a targeted signed REGISTER to
the node and wait for the 200 OK to store the binding of
the user. Similarly, INVITE messages can be protected
for integrity.

The Identity mechanism does not guarantee the confi-
dentiality of data exchange. One solution for confidential-
ity could be TLS, which is not applicable to our
framework. Using S/MIME for confidentiality is a better
solution, but presents the problem of noticeably increasing
the size of exchanged messages. Moreover, implementing
S/MIME in the end nodes would add complexity and
may not be suitable for small devices. Within the con-
straints of our framework, we do not deem worthwhile to
make the SIP signaling confidential, as the trade-off
between added complexity and overhead and received ben-
efits bends to the side of complexity. However, we plan to
build applications based on SIP, namely add the support of
SIP based Instant Messaging and Presence services. This
will require that the confidentiality of exchanged user data
messages is ensured. In this case, exploitation of S/MIME
encryption may be necessary.

In order to provide confidentiality to SIP signaling mes-
sages, a new security mechanism, called datagram TLS
(dTLS) [37], could be used as well. dTLS enables TLS-like
protection at transport layer over a datagram protocol, like
UDP. If SIP would run over dTLS, confidentiality of mes-
sages would be achieved without excessive overhead, and at
the same time broadcast operations would be supported.
However, the proposal is very new and its interworking
with SIP has not been completely defined. An Internet
Draft [38], which is still an individual submission to the
SIP Working Group, defines how SIP can run over dTLS.
A mature proposal seems still far away. Analyzing the inte-
gration of dSIP with dTLS is a possible subject for future
work.

When the user discovery is performed with the help of
the SLP protocol, the security of this phase is naturally

3288 L. Källström et al. / Computer Communications 29 (2006) 3277–3294

provided with the enhanced SLP security mechanisms,
described in Section 4.1. The Authenticated Identity mech-
anism is still used to protect the later phases in session
management.

5. Evaluation of the implementation

This section presents a performance evaluation of our
implementation. The focus is on analyzing the overhead
that SLP and SIP protocols introduce when looking for
services (namely, the service SIP) or registering in the net-
work with different levels of security. The analysis is based
on an estimate of the number of messages sent over the air
and their size in link-local ad-hoc networks of varying size.
The processing load introduced in the ad-hoc device by the
security module is analyzed as well.

5.1. Prototype implementation

The described framework has been implemented and
tested under Linux. Four laptops were used to form a
link-local ad-hoc network running with an IEEE 802.11
WLAN in ad-hoc mode. The design goals, in terms of func-
tionalities of the single services and their interoperability,
were successfully met.

Besides the infrastructural services, we also implemented
a chat application as an example of a generic service run-
ning on top of the infrastructural services. The service dis-
covery module was utilized for discovering the other users
in the network and consequently begin the chat session.
When the security level was enforced, only authorized users
could join the chat channel of a user; if confidentiality was
requested, the messages were encrypted.

Interoperability between SLP and SIP was successfully
tested as well; the SIP server module first retrieved the
other users’ bindings with SLP, and after this a chat session
was established using the SIP INVITE-based model.
Decentralized SIP has proved to be successful too; all users
in the network were successfully discovered using the
REGISTER – 200 OK exchange and chat sessions were ini-
tiated between them. When authentication was requested,
the 200 OK messages were returned only to authorized
users. Unauthorized users did not receive the contact infor-
mation from the nodes that did not grant authorization,
based on the certificates and rules stored in the AA module.

5.2. Comparison between dSIP and sSIP

Retrieving the bindings of SIP users with SIP-only
methods, as discussed in Section 3.4 is complementary to
retrieving them using SLP, described in Section 4.2. We
carried out a comparison of the overheads due to the two
approaches.

When a user registers in an ad-hoc network where there
are already N � 1 nodes, a broadcast SIP REGISTER mes-
sage is sent and up to N � 1 SIP 200 OK responses are
received. When SLP is used, the registering node sends

an SLP broadcast Service Request message, to which up
to N � 1 unicast SLP Service Reply messages are returned.
After waiting for a predetermined time, the registering
node issues a broadcast SLP Attribute Request query, for
retrieving, as service attributes, the AORs associated to
the discovered service addresses. Again, up to N � 1
unicast responses are returned. We consider the worst case,
from the bandwidth consumption point of view, that all the
other N � 1 nodes reply to a registering user when
computing the registration overhead.

Table 1 shows typical SIP and SLP messages sizes at
transport level, in the various defined security levels. The
size of the message depends on the carried payload, like,
e.g., user or service name; we have measured the sizes with
different payload contents, and taken the sizes (bytes)
reported in the table as average reference values.

In the rest of the discussion, we assume that in SLP there
is a single exchange of broadcast messages and unicast
replies, where the message size is the sum of the two mes-
sages used in each phase, respectively. The value 300 bytes
in the broadcast section for SLP integrity (or authentica-
tion) level messages, means that the average sum of a
broadcast Service Request and Attribute Request is 300
bytes. The same reasoning applies to the other SLP entries
of the table. SIP messages are not protected for confidenti-
ality because with S/MIME, which is the most suitable
method in our framework for providing confidentiality
for SIP, SIP messages would become too big. The band-
width consumption, and processing load as well, were con-
sidered too high compared to the benefits that encryption
of SIP signaling messages would produce.

The overhead of a node registration with both
approaches increases linearly with the numbers of nodes
in the network. Fig. 9 shows the bytes sent over the wireless
link to register an incoming node and finding other users in
the network, with dSIP and sSIP when no security protec-
tion is used, in a worst case scenario where all the other
N � 1 nodes send a unicast reply to the broadcast message.
In this and in the following figures, dSIP data is indicated
by a thick solid line, while sSIP data is indicated by a thin
solid line. The increase is linear because if the N + 1th node
joins the network, 1 broadcast message and N unicast mes-
sages are exchanged in the network. So, the increase in
bytes is proportional to the average size of a unicast reply,
about 310 bytes for dSIP and 110 bytes altogether for the
two SLP replies. Expectedly, dSIP is more bandwidth
aggressive than sSIP, as SIP messages are bigger than
SLP messages. Fig. 9 shows that registering, e.g., the 50th
user with dSIP consumes as much bandwidth as registering
the 140th user with sSIP, about 15 kbyte. However, we
must bear in mind that a network of 50 nodes is already
quite close to the scope of our target network environment.
For smaller networks, the overhead of dSIP is still quite
close to the sSIP counterpart.

Fig. 10 shows the bytes sent altogether to register N

users. The figure refers to the worst case scenario, with
security level of none. For every registration a number of

L. Källström et al. / Computer Communications 29 (2006) 3277–3294 3289

messages equal to the number of users N in the network are
sent; that is, one broadcast and N � 1 unicast replies. Con-
sequently, the total number of registration related messages
sent in the ad-hoc network after that the Nth user has reg-
istered is:

XN

k¼1

k ¼ NðN þ 1Þ
2

: ð1Þ

The total registration related bytes sent to register 50 users
with dSIP, a little less than 400 kbyte, correspond to the
amount of data needed with sSIP to register 85 users.

Figs. 11 and 12 show the same data when security level
is integrity. Both SIP and SLP messages used in this case
are bigger. SIP messages have the Identity header fields,
which add a overhead of 240 bytes compared to the situa-
tion of no authentication; SLP messages carry the addition-
al security block and the signature. Although SIP messages

remain bigger, the overhead introduced by the Identity
mechanism is lower than its SLP counterpart. The main
design goal for secure SIP was in fact to provide integrity
with minimal added overhead. Particularly, Fig. 11 shows
that the overhead of a single registration in dSIP for the
50th node is about 27 kbyte, approximately equal to the
overhead of sSIP for a 95 node network. We recall that
when no security mechanisms were used, a dSIP network
of 50 nodes generated an overhead similar to an sSIP net-
work of 140 nodes.

In terms of global registration overhead, it is possible to
see from Fig. 12 that after the 50th user has registered with
dSIP, a total of about 700 kbyte of data has been
exchanged in the network. This amount corresponds to
the registration of 69 nodes with sSIP. When no security
mechanisms are used, the equivalence was reached for an
sSIP network of 85 nodes.

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

0 10 20 30 40 50 60 70 80 90 100 110 120

Nodes

G
lo

b
al

 N
et

w
o

rk
 O

ve
rh

ea
d

 (
K

B
yt

es
) Total bytes dSIP

Total bytes sSIP

Fig. 10. Global registration overhead. Security level none.

0

20000

40000

60000

80000

100000

120000

0 20 40 60 80 100 120 140 160 180 200
Nodes

O
ve

rh
ea

d
 p

er
 s

in
g

le
 n

o
d

e
(B

yt
es

) Overhead dSIP

Overhead sSIP

Fig. 11. Overhead of a single registration. Security level integrity.

0

500

1000

1500

2000

2500

3000

3500

4000

0 10 20 30 40 50 60 70 80 90 100 110 120

Nodes

G
lo

b
al

 N
et

w
o

rk
 O

ve
rh

ea
d

 (
K

B
yt

es
) Total bytes dSIP

Total bytes sSIP

Fig. 12. Global registration overhead. Security level integrity.

Table 1
SIP and SLP typical message sizes

None Integrity Confidentiality

Broadcast Unicast Broadcast Unicast Broadcast Unicast

SIP 330 310 570 550 – –
SLP 110 110 300 290 480 460

0

10000

20000

30000

40000

50000

60000

70000

0 20 40 60 80 100 120 140 160 180 200

Nodes

O
ve

rh
ea

d
 p

er
 s

in
g

le
 n

o
d

e
(B

yt
es

) Overhead dSIP
Overhead sSIP

Fig. 9. Overhead of a single registration. Security level none.

3290 L. Källström et al. / Computer Communications 29 (2006) 3277–3294

5.3. Discussion of dSIP and sSIP

The choice of the better option between dSIP and sSIP
cannot be based only on the basis of bandwidth require-
ments. One advantage of dSIP over sSIP is the interopera-
bility between different solutions, as discussed in Section
4.2. SIP functionalities are mandatory to implement if ses-
sion based applications are to be deployed; therefore, using
SIP for user discovery operations as well is reasonable. On
the other hand, in ad-hoc networks a service discovery pro-
tocol is often necessary to discover what services are avail-
able; even if dSIP is used, an ad-hoc node may need to use
a service discovery protocol to acquire information about
the availability of other, non-SIP, services in the network.
If bandwidth limitations are an issue, sSIP can thus be cho-
sen instead of dSIP for SIP user discovery.

Another point that favors the use of dSIP over sSIP is
the availability of the bindings at each node. With dSIP,
with a single message handshake the bindings are
exchanged between the newcomer and the other nodes in
the ad-hoc network; with SLP, this is not possible, as the
bindings cannot be retrieved from an SLP request. In an
SLP query, the AOR of the querying user is in fact not
passed to the other nodes. With sSIP, broadcast SLP
requests for users in the network can be periodically
refreshed; this allows the broadcasting node to receive
replies from newcomers. However, a node would have to
wait for the expiration of its registration refresh timeout
to discover the newcomers’ identities.

If the user or local policies require the confidentiality
security level for the user discovery phase, dSIP cannot
be used because protecting dSIP messages for confidential-
ity consumes too much bandwidth. The solution that
would ensure confidentiality at the price of reasonable
bandwidth consumption is sSIP.

In summary, the two alternative solutions can and
should coexist; the user could be prompted to choose
which user discovery mechanism he wants to use. The
choice depends, among others, on the operational envi-
ronment, on the application using the underlying SESSI
infrastructural services and on the security level
requested.

5.4. AA module

The device-local authentication and authorization
mechanism is fully distributed; security decisions are made
locally in the user’s device. However, this flexibility comes
with a trade-off in terms of storage and processing require-
ments. To evaluate the feasibility of the solution, we mea-
sured the performance of the AA module and estimated the
processing due to dSIP and sSIP at the authentication level.
The tests were run on a laptop with a 1.8 GHz CPU. For
the test, 9000 access control rules and 300 users were stored
in the module. For each user, five application-specific cer-
tificates with 1024-bit keys were stored. Further, we assume
that even though each node sends two reply messages with

sSIP, the device does not check a user’s access rights twice
but only when the first message arrives.

First of all, the measurements showed that a mobile
device can easily store credentials, information and access
control rules even for thousands of users. An AA module
with 30,000 access control rules and 1000 stored users, each
with 10 application-specific certificates, takes about 16MB
of storage space. Such a database size is more than enough
for most users and can be stored on almost any smart-
phone on the market. Typically, in fact, a user may have
the contacts of a few hundred other users, each with 1–5
application-specific certificates, and around a few hundred
access control rules; in this case, 1.5MB are sufficient.

Fig. 13 shows the AA processing load on a registering
node using dSIP and sSIP on the authentication level.
The figure refers to a worst case scenario, from the compu-
tational load point of view, when all the nodes in the net-
work decide to reply to the broadcast registration
message. The processing load is caused mainly by incoming
messages. All nodes sign their outgoing messages. When
the registering node receives a message, it must find the
user in the database, execute access control operations,
and verify the signature. In the test environment, the dSIP
registration phase took about 10 s or a little less than
20 · 109 CPU cycles when there were 20 nodes in the net-
work. sSIP was somewhat less efficient since each registra-
tion causes two message exchanges with each node. Then,
14 nodes could participate in the registration phase with
the same overhead of 10 seconds. For an old node, the
AA processing due to the newcomer’s registration was
0.97 · 109 CPU cycles or 0.54 s with dSIP, and 1.44 · 109

CPU cycles or 0.8 s with sSIP. In summary, registration
operations pose a noticeable burden only on the registering
node; for the older nodes, external registrations are practi-
cally transparent from the CPU consumption point of
view, which is a desirable property.

The total AA processing load for a registering node was
dominated by incoming messages. The time spent in creat-
ing and verifying signatures was negligible: an optimized
implementation creates or verifies RSA and DSA signa-
tures with 1024 bit keys in a few hundredths of a second.

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30 35 40 45 50
Nodes

C
P

U
 C

yc
le

s
(*

10
ex

p
9)

AA processing - dSIP
AA processing - sSIP

Fig. 13. AA-related processing load of a single registration in dSIP and
sSIP. Security level authentication.

L. Källström et al. / Computer Communications 29 (2006) 3277–3294 3291

Most of the processing was caused by mapping user names
to base users and retrieving certificates from the database.

Although the time consumption is quite large, these
results are within tolerable limits. For instance, authenti-
cating one device with Bluetooth takes several seconds,
and still Bluetooth has gained wide consumer acceptance.
Certificate search can also be speeded up several times by
redesigning database indexing and using a more sophisti-
cated search algorithm. To further speed up the search,
the certificate repository can be read into memory to avoid
slow file access from the hard disk. On handheld terminals,
memory cards with fast read access are usually used for file
storage and file access is faster. Optimized cryptographic
implementations will cut the signature creation and verifi-
cation time as well.

The test environment CPU was multiple times faster
than CPUs used on current-day PDAs. However, keeping
in mind that handheld terminals are fast becoming more
powerful, the time overhead should also be tolerable on a
mobile terminal. In any case, protecting messages for secu-
rity increases the processing load in the device and the mes-
sage transmission time. Since ad-hoc devices will always be
powered by batteries, it is advisable to perform secure com-
munication only when needed or when battery resources
allow it.

6. Conclusions and future work

The presented architectural framework enables the
secure and dynamic use of services in wireless ad-hoc net-
works. It has three foundations: device-local management
and enforcement of authentication and authorization,
secure discovery of services, and secured session manage-
ment. These three components are present in the secure
use of any service, and as they traditionally use server-
based architectures, they have formed a barrier for smooth
service deployment in networks without special infrastruc-
ture. Our distributed framework is especially designed for
infrastructureless ad-hoc networks. It can also be extended
to support interworking with external infrastructured
networks.

Ad-hoc networks are formed by the users that join the
network. Our framework therefore deploys a user-rooted
public key infrastructure for authentication. Users that
have met once can easily authenticate each other, even if
a user’s application-specific authentication material is
renewed in between. The scheme is fully decentralized in
that all access control rules are evaluated locally in each
device, and all authentication-related cryptographic pro-
cessing is performed locally. Nevertheless, a user must
obtain the other users’ certificates and verify them in
advance. This phase is eased by a certificate exchange ser-
vice that we plan to add next. Then, the user only needs
to carry the base certificates of other users, or alternatively,
also retrieve these in the ad-hoc network and verify them
personally. Tests should still be carried out to verify the
usability and intuitiveness of the security management

scheme. Computational power and battery form a more
worrisome bottleneck. Authentication is handled common-
ly for several services, and so every signing and verification
procedure uses a large common certificate repository. The
overall performance is yet within tolerable limits especially
in small link-local ad-hoc networks.

The service discovery scheme described in this paper
provides a secure way to handle distributed service discov-
ery in ad-hoc networks. The distribution was achieved by
integrating the user agent and service agent functionality
to one node and discarding the directory agents from the
scheme. On the other hand, establishing security required
interworking of the AA and the SD modules. The service
was based on the Service Location Protocol, which was
extended to support the three common security levels
defined for the framework. Future work is needed to enable
seamless and secure service discovery between ad-hoc and
infrastructured networks. Extension of SLP features for
enabling passive service discovery is another possible target
for future research.

Distributed session management was achieved by adapt-
ing the Session Initiation Protocol (SIP) to a distributed
approach. The scheme allows for discovering SIP users in
an ad-hoc network and for establishing media sessions with
them in an entirely decentralized fashion. Session manage-
ment operations have been protected for integrity using a
self-signed certificate based mechanism; the AA module
was used for managing the security associations among
users. A SIP application layer can be implemented on top
of the middleware signaling layer; the IETF SIMPLE
working group is defining extensions to the baseline SIP
protocol for leveraging instant messaging and presence
applications. Enhancing decentralized SIP with SIMPLE
functionalities is also a possible development direction.
Finally, a SIP proposal, based on the SUBSCRIBE/NOTI-
FY framework [39], seems a promising starting point for
the exchange of certificates on-line.

The most important future common development will
be a gateway that provides connectivity between the ad-
hoc network and an external infrastructured network.
Since globally routable IP addresses are not always avail-
able to the ad-hoc network, the gateway could act as a
Network Address Translator (NAT) for all the nodes in
the ad-hoc network. This gateway will act not only at the
routing level, but it will also provide additional services like
the possibility of discovering services inside and outside the
ad-hoc network. The gateway will then operate as a special
node that hosts a service discovery proxy: the proxy should
store both service information and security credentials
from both networks. A SIP proxy will also be implemented
in the gateway node. The SIP proxy facilitates session
establishment procedures and registrations with nodes out-
side the ad-hoc network; a major feature of the proxy will
be to allow external nodes to contact nodes in the ad-hoc
network, even though no global IP addresses are used in
the ad-hoc network. The operations of gateway discovery
and the utilization of services will be protected, by means

3292 L. Källström et al. / Computer Communications 29 (2006) 3277–3294

of the integrations of the service discovery and session
management modules with the extended SESSI security
mechanisms. However, the use of NATs imposes changes
to the working mode of the protocols and services run in
the network; moreover, NAT-based solutions are often
protocol or service specific. The final aim is to build a
framework for seamless service interworking between ad-
hoc and infrastructured networks.

Acknowledgments

This work is part of the SESSI project (2644/31/03),
funded by the National Technology Agency of Finland,
Elisa Corporation, the Finnet Group, and Nokia Corpora-
tion. The authors thank all the project members for their
comments and contributions to the development of the
project and the paper.

References

[1] E. Guttman, C. Perkins, J. Veizades, M. Day, Service location
protocol, version 2, RFC 2608, IETF (June 1999).

[2] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, E. Schooler, SIP: session initiation protocol,
Request for Comments 3261, IETF (June 2002).

[3] F. Stajano, R. Anderson, The resurrecting duckling: Security issues
for ad-hoc wireless networks, in: Proceeding of the 7th International
Workshop on Security Protocols, Lecture Notes in Computer
Science, Springer-Verlag, 1999.

[4] N.J. Muller, Bluetooth Demystified, McGraw-Hill, 2000.
[5] W. Shunman, T. Ran, W. Yue, Z. Ji, WLAN and its security

problems, in: Fourth International Conference on Parallel and
Distributed Computing, Applications and Technologies
(PDCAT2003), 2003, pp. 241–244.

[6] D. Atkins, W. Stallings, P. Zimmermann, PGP message exchange
formats, RFC 1991, IETF (August 1996).

[7] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, T. Ylonen,
SPKI certificate theory, RFC 2693, IETF (September 1999).

[8] M. Blaze, J. Feigenbaum, J. Ioannidis, A. Keromytis, The KeyNote
trust-management system version 2, RFC 2704, IETF (September
1999).

[9] P. Fenkam, S. Dustdar, E. Kirda, G. Reif, H. Gall, Towards an access
control system for mobile peer-to-peer collaborative environments, in:
IEEE International Workshops on Enabling Technologies: Infra-
structure for Collaborative Enterprises (WETICE’02), IEEE, 2002.

[10] J. Undercoffer, F. Perich, A. Cedilnik, L. Kagal, A. Joshi, A secure
infrastructure for service discovery and access in pervasive comput-
ing, Mobile Networks and Applications 8(2) (2003), pp. 113–125.

[11] S. Liimatainen, Usability of decentralized authorization systems - a
comparative study, in: Proceedings of the Thirty-Eighth Annual
Hawaii International Conference on System Sciences, 2005.

[12] UPnP Forum, UPnP Device Architecture version 1.0.1 (December
2003).

[13] The World Wide Web Consortium, Web services activity, Available
online: http://www.w3.org/2002/ws/, 01-May-2006.

[14] L. Gong, Project JXTA: A Technology Overview, Sun Microsystems
Inc.

[15] ITU-T, Packet-based multimedia communications systems. Recom-
mendation H323 version 5, Tech. rep., International Telecommuni-
cation Union ITU (July 2003).

[16] J. Glassman, W. Kellerer, H. Muller, Service architectures in H.323
and SIP: a comparison, IEEE Communications Surveys and Tutorials
5 (2).

[17] S. Cheshire, B. Aboba, E. Guttman, Dynamic Configuration of Link-
Local IPv4 Addresses, RFC 3927, IETF (May 2005).

[18] S. Thomson, T. Narten, IPv6 stateless address autoconfiguration,
Request for Comments 2462, IETF (December 1998).

[19] N. H. Vaidya, Weak duplicate address detection in mobile ad hoc
networks, in: MobiHoc ’02: Proceedings of the 3rd ACM interna-
tional symposium on Mobile ad hoc networking & computing 2002,
pp. 206–216.

[20] Z. Fan, S. Subramani, An address autoconfiguration protocol for
IPv6 hosts in a mobile ad hoc network, Elsevier J. Comput. Commun.
28 (2005) 339–350.

[21] S.E. Czerwinski, B.Y. Zhao, T.D. Hodes, A.D. Joseph, R.H. Katz,
An architecture for a secure service discovery service, in: Mobicom
’99, ACM, Seattle, Washington, USA, 1999.

[22] D. Bryan, J. C., A P2P approach to SIP registration, Internet-draft
(work in progress), IETF, draft-bryan-sipping-p2p-02 (March 2006).

[23] H. Khlifi, A. Agarwal, J. Gregoire, A framework to use SIP in ad-hoc
networks, in: Canadian Conference on Electrical and Computer
Engineering. IEEE CCECE, vol. 2, 2003, pp. 985–988.

[24] N. Banerjee, A. Acharya, S. K. Das, Peer-to-peer SIP-based services
over wireless ad hoc networks, in: BROADWIM: Broadband
Wireless Multimedia Workshop, 2004.

[25] F. Zhu, M. Mutka, L. Ni, Facilitating secure ad hoc service discovery
in public environments, in: The 27th Annual International Computer
Software and Applications Conference (COMPSAC’03), 2003, pp.
433–438.

[26] B. Bhargava, X. Wu, Y. Lu, W. Wang, Integrating heterogeneous
wireless technologies: a cellular aided mobile ad-hoc network
(CAMA), Mobile Netw. Appl. 9 (2004) 393–408.

[27] S. Capkun, L. Buttyan, J.-P. Hubaux, Self-organized public-key
management for mobile ad-hoc networks, IEEE Trans. Mobile
Comput. 2 (1) (2003) 52–64.

[28] A. Weimerskirch, G. Thonet, A distributed light-weight authentica-
tion model for ad-hoc networks, in: The 4th International Conference
on Information Security and Cryptology, Springer-Verlag, Seoul,
2001, pp. 341–354.

[29] C. Tschudin, P. Gunningberg, H. Lundgren, E. Nordstrm, Lessons
from experimental MANET research, Elsevier J. Ad-Hoc Netw. 3 (3)
(2005) 221–233.

[30] S. Kent, R. Atkinson, Security architecture for the internet protocol,
RFC 2401, IETF (November 1998).

[31] S. Leggio, J. Manner, A. Hulkkonen, K. Raatikainen, Session
initiation protocol deployment in ad-hoc networks: a decentralized
approach, in: 2nd International Workshop on Wireless Ad-hoc
Networks (IWWAN), London, May, 2005.

[32] L. Källström, J. Saarinen, Secure service discovery protocol imple-
mentation for wireless ad-hoc networks, in: 1st International Wireless
Summit, Aalborg (2005) 17-22.

[33] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A.
Luotonen, L. Stewart, HTTP authentication: basic and digest access
authentication, RFC 2617, IETF (June 1999).

[34] T. Dierks, C. Allen, The TLS protocol version 1.0, RFC 2246, IETF
(January 1999).

[35] B. Ramsdell ed., Secure/multipurpose internet mail extensions
(S/MIME) version 3.1 message specification, RFC 3851, IETF (July
2004).

[36] J. Peterson, C. Jennings, Enhancements for authenticated identity
management in the session initiation protocol SIP, Internet draft
(work in progress), IETF, draft-ietf-sip-identity-06 (October 2005).

[37] N. Modadugu, E. Rescorla, The design and implementation of
datagram tls, in: Proceedings of the Network and Distributed System
Security Symposium, NDSS 2004, San Diego, California, USA.

[38] C. Jennings, N. Modadugu, Using DTLS as a transport for SIP,
Internet draft (work in progress), IETF, (draft-jennings-sip-dtls-02)
(March 2006).

[39] C. Jennings, J. Peterson, Certificate management service for SIP,
Internet-draft (work in progress), IETF, draft-ietf-sipping-certs-03
(March 2006).

L. Källström et al. / Computer Communications 29 (2006) 3277–3294 3293

Linda Källström, M. Sc. (Tech) is pursuing her
doctoral studies at the Laboratory of Telecom-
munication Software and Multimedia at Helsinki
University of Technology. In the past, she has
researched authentication schemes in different
types of network environments and social envi-
ronments. She currently focuses on secure service
deployment in ad-hoc networks.

Simone Leggio obtained his Master of Science in
Electronic Engineering at University of Catania,
Italy, in July 2002, with full honors and his
Licentiate Degree at the Department of Computer
Science of University of Helsinki. Currently he is
working towards his Ph.D. in Computer Science at
University of Helsinki. His research interests
include IP session management in ad-hoc and
mobile networks, instant messaging and presence
systems, seamless mobility in IP-based networks,
and IP quality of service in mobile environments.

Jukka Manner is a professor of computer science
at the Helsinki University of Technology and at
the University of Helsinki. He received his MSc.
in computer science in 1999 and a PhD. in com-
puter science in 2004 from the University of
Helsinki. His research and teaching focuses on
mobile and wireless communications, especially
QoS and mobility in future generation mobile
networks, IP technologies, distributed systems,
and operating systems. He has participated in
several national research projects (funded by

National Technology Agency of Finland and industry) and in several EC
projects. He has actively participated in the IETF for many years. He has
published over 30 articles in conferences and journals, and several IETF
documents, and has served on the TPC of many international conferences.

Prof. Tommi Mikkonen (MSc 1992, Lic. Tech.
1995, Dr. Tech 1999, all from Tampere Univer-
sity of Technology, Tampere Finland) works on
distributed and mobile systems at the Institute of
Software Systems at Tampere U of Tech. Over
the years, he has written a number of research
papers on distributed systems and their develop-
ment as well as supervised a number of thesis on
the subject.

Kimmo Raatikainen [M’81] received the Ph.D.
degree in computer science in 1990 from the
University of Helsinki. Since 1998 he has been a
professor at the Helsinki University Computer
Science Department leading the group of Dis-
tributed Systems and Data Communication.
Prof. Raatikainen has c. 100 scientific publica-
tions on areas of performance evaluation, simu-
lation methodology, real-time databases, Internet
protocols, and middleware. Professor Raatikai-
nen has had a leading role in several European

projects. He has also led several national research projects (funded by the
National Technology Agency of Finland (TEKES) and industry on mobile
computing, wireless communication, middleware for mobile computing
and on telecommunications software architectures. His current research
interests include operating systems, protocols and middleware for mobile
computing.

Jussi Saarinen (MSc 2006 from Tampere Uni-
versity of Technology, Tampere, Finland) is
currently working as a research assistant at the
Institute of Software Systems at Tampere Uni-
versity of Technology. During the last two years,
he has contributed to three research papers on
security of service discovery.

Sanna Suoranta, Lic. Sc. (Tech) works as a
teaching researcher in the Laboratory of Tele-
communication Software and Multimedia at
Helsinki University of Technology. She is doing
her doctoral thesis on management of digital
identities in heteregeneous and decentralized
network environments.

Dr. Tech. Antti Ylä-Jääski is a Professor of
Telecommunications Software, Telecommunica-
tions Software and Multimedia Laboratory,
Department of Computer Science and Engineer-
ing, Helsinki University of Technology, Finland.
He is also a Research Fellow in Network Tech-
nologies Laboratory, Nokia Research Center,
Helsinki, Finland. Prof Dr. Tech. Antti Ylä-
Jääski received his MSc. degree in Helsinki Uni-
versity of Technology, Finland and PhD degree
in ETH Zuerich, Switzerland. Antti has worked

with Nokia 1994–2004 in several research management positions in Nokia
Research Center, Nokia Ventures Organisation and Nokia Networks with
focus on future Internet technologies, mobile networks, applications,
services, service management and service architectures. He has published
over 30 articles and he holds several approved patents. Antti’s current
research interests include mobile networking, heterogeneous network
environments, services, service architectures, service management and
security issues.

3294 L. Källström et al. / Computer Communications 29 (2006) 3277–3294

	A framework for seamless service interworking in ad-hoc networks
	Abstract
	Introduction
	Research challenges in ad-hoc networks
	A service framework for ad-hoc networks
	Seamless service interworking
	Evaluation of the implementation
	Conclusions and future work
	Acknowledgments
	References

