
Towards Service Interworking among Ad-Hoc
Networks and the Internet

Simone Leggio∗ Sanna Liimatainen† Jukka Manner∗ Tommi Mikkonen‡ Jussi Saarinen‡ Antti Yl ä-J̈aäski†

∗University of Helsinki
Department of Computer Science

P.O.Box 68, FIN-00014 University of Helsinki
Email: leggio,jmanner@cs.helsinki.fi

†Helsinki University of Technology
TML Laboratory

P.O.Box 5400, FIN-02015 HUT
Email: sos,anttiyj@tml.hut.fi

†Tampere University of Technology
Department of Information Technology

P.O.Box 553, FIN-33101 Tampere
Email: tjm,saarin24@cs.tut.fi

Abstract— Ad-hoc networking is a promising technology for
new services and applications. Ad-hoc networks constitute an
interesting computing environment, characterized by the lack
of centralized support from pre-existing network entities. Prac-
tically all research so far in the area of service and session
management has focused on centralized Internet-based solutions.
In this paper, we develop service discovery, session management,
and the specific security measures needed to offer services in
a wireless ad-hoc network. We chose SLP and SIP as our core
protocols, and extend their functionality to support decentralized
operation. Furthermore, we present a scheme to define the
security measures needed based on services and users.

I. INTRODUCTION

Data services are emerging into various wireless networks.
In cellular environments — like the future 3G networks —
centralized architectures are commonly deployed to enable
service delivery and service management. This means that
services are typically assumed to be handled by servers that
are managed by the telecommunication operators.

There is another important parallel wireless trend that is
currently happening; wireless local area networks are deployed
in enterprises, in public places, and at home. Also in these
networks, both network level services and service delivery
are typically enabled by centralized servers. However, in
addition to the centralized architectures, wireless local area
ad-hoc networking will emerge when end-user devices can
establish ad-hoc communities without any infrastructure. Then,
peer-to-peer systems complement the traditional client-server
architecture in ad-hoc network environments.

Ad-hoc networks are networks that form spontaneously
between nodes in the vicinity of each other. The network
topology changes as nodes join and leave the network, or
move around within the network. As there are no stationary
nodes, all services in the network must be provided by the
participating nodes. This is a challenging task, since the
availability of services and users changes with the node
movement. Moreover, the ad-hoc network is typically formed
using a wireless communication technology, which makes it
difficult to prohibit third parties to listen to, and take part in,
the communications. This, together with the dynamic network
topology, makes the network more vulnerable to attacks than
traditional wired networks.

In this paper, we specify and develop middleware services
that enable seamless service interworking among wireless ad-
hoc networks, cellular networks and the Internet. We further
divide the middleware services into three subareas: session
management, service discovery, and authentication and autho-
rization mechanisms. We explore how to take advantage of
various technologies in heterogeneous networks to establish
ad-hoc communities among groups of people, and to enable
discovery and use of services. The design of the system
architecture is based on the following requirements:

• The solution must cope with the unannounced appearance
and disappearance of any node at any time.

• Due to the characteristics of wireless links, the protocols
must be able to cope with lost and corrupt messages, and
be conservative in their use of the wireless bandwidth.

• The solution must be based on extending existing proto-
cols and implementations.

• It must be possible to run the services in secured mode,
even without access to external AAA servers.

To meet the first requirement, all services are fully dis-
tributed: all nodes are equal and carry with them the minimum
functionality needed to make use of specific services in an
ad-hoc network. To fulfill the second and third requirements,
we compared several existing solutions and chose the most
suitable ones that work in different types of networks, and
whose bandwidth consumption can be tuned. To meet the last
requirement, we specified an access control module that uses
three security levels: none, authentication and confidentiality.
All services should offer these three levels, or if a level cannot
be implemented, simply deny service on that level.

This work is being carried out in the SESSI project (Seam-
less Service Interworking in Heterogeneous Mobile and Ad-
Hoc Networks). The project is divided into two phases. In the
first phase, we have developed the discussed middleware for an
isolated ad-hoc network that has link-local scope. All nodes are
inside the radio transmission range, and, thus, can hear each
other directly, and no IP routing is needed. IP connectivity
related issues, such as IP address auto-configuration and name
resolution, were left out of scope since there is already a lot
of work in this area (see, e.g., [1], [2], and [3]). In the second

phase which is currently underway, we broaden our designs
and extend the link-local scope, e.g., to support gateways to
external networks, such as the Internet. This would allow mak-
ing use of new services, setting up sessions with users on the
Internet, and verifying user security credentials with external
AAA servers. Limiting our scope to link-local networks in the
first phase was deemed justified when we were looking for
concrete real-life scenarios, where ad-hoc networking could
be an interesting solution. Interesting scenarios could be, e.g.,
meetings in a room, lectures and presentations in a lecture
hall, and caf́es.

We have implemented the middleware in a Linux-based
environment, and evaluated the applicability of the schemes in
our target environment. The three subareas of our project were
implemented as independent modules, where modules can
make use of the services of the other modules, e.g., securing a
service discovery. The implementations showed that the initial
ideas also work in practical computing environments.

This paper describes our research during the first phase of
the SESSI project. In Sections 2, 3, and 4 we present our
design for middleware supporting service discovery, session
management, and security in a challenging ad-hoc network,
respectively. In Section 5 we discuss the experiments we
conducted to validate our designs. In the final section, we
summarize the work, and discuss many interesting issues we
plan to study during the second phase of our project.

II. SERVICE DISCOVERY

As the overall architecture matured, we conducted an evalu-
ation of different service discovery protocols, which could be
used for searching and advertising services. An option should
be offered for searching for a specific type of a service, and for
services with some specific attributes. Furthermore, we wanted
to be able to treat all the peers equally, implying that each peer
should be able to act as a client as well as a service provider.

Several candidates, including Bluetooth Service Discovery
Protocol (BT SDP), Universal Plug and Play (UPnP), and Jini
were reviewed with regard to the functionality they provided
and the needs of the project. The aspect that we considered to
be of utmost importance is the ability to mutually authenticate
both clients of services as well as servers that provide them.
In addition to technical aspects of the protocols, also the
availability of the protocol source code as the starting point
for the experiment was considered important, together with
the option that the protocol should be natural to use in an all-
IP environment. In the end, we selected the Service Location
Protocol (SLP) [4] as the protocol to utilize. As the practical
implementation, we have relied on openSLP [5], which has
been wrapped with a generic service discovery interface.

A. SLP overview

SLP is an IETF protocol intended for service lookup in
the Internet. The protocol implies three different roles; User
agents (UA), i.e. clients, use SLP to look for services offered
by other parties, Server agents (SA) use SLP to inform its
clients about available services, and Directory agents (DA)

use SLP to maintain a directory of available services offered
by different entities. Each service has a type, which consists
of a concrete and an abstract type. The location of the service
is expressed with a URL. Moreover, services’ attributes can be
given as attribute strings. Ordering of messages exchanged by
different parties is handled with a stamp referred to as XID,
which is increased by one in each new message.

By default SLP operates reactively over UDP. A user can
search single services or perform a search for available service
types. This operation model ties the used bandwidth to the
searching frequency. The UA can send multicast or broadcast
service and type request messages if no DAs are available,
otherwise unicast is used to communicate with a known DA.
Attributes for a certain service can be requested separately
with a unicast attribute request message. SAs may also use
unicast messages to register and deregister services with DAs.

In standard SLP, it is possible to authenticate the SA that
originally created a URL or an attribute list of services.
The SA can sign the URL and the lists of the services it
advertises. When sending these elements to UAs, SA adds
the corresponding signatures to the end of the message. In
addition, an SLP message contains a timestamp and a security
parameter index (SPI) that identifies the keying material, key
length, and the algorithm that is to be used by the clients. The
authentication block of SLP is illustrated in Figure 1.

Fig. 1. SLP authentication block

However, SLP does not offer means for protecting the
integrity of the most common messages. Therefore, it is
possible, e.g., to reuse signed information in faked messages.

B. Modifications needed for Ad-Hoc environment

Since our target environment is a peer-to-peer network, the
architecture of SLP must be reconsidered. First, no generic DA
can be used in the system, as this would result in increased
network traffic and distribution of deprecated service informa-
tion. Instead, services are always discovered or advertised by
peers themselves. Second, in order to keep all peers similar,
all of them include ad-hoc capable UA and SA.

Due to the similarity discussed above, it is not enough to
be able to authenticate SAs services, but the client of the
service may also be authenticated, thus enabling more secure
services. This has led us to consider some modifications to
core SLP. At least the following security-related issues must
be be tackled: no means to connect a service to certain security
properties, signatures used for integrity protection are not

sufficient against tampering, no authentication of UA to SA,
timestamping relies on clock synchronization, and no secured
means to bind messages to a certain sequence (peers may pick
whatever XID they wish).

We tackled these problems as follows. To establish the
connection between a single service and the required security
properties, we used the abstract part of the original SLP service
type as a security identifier. In consequence the service type
requests were discarded because they could be used to obtain
information from the various services in the ad-hoc network.
The problems related to integrity and authentication were
solved by replacing the structural authentication block with
a generic block that can be used in all SLP messages. First,
the SPI is replaced by sender’s and group’s identifiers. Second,
the original authentication block was replaced by a signature
calculated over the entire message including the receiver’s ID.
The timestamp problem was solved by replacing the real-time
stamping scheme with logical stamps, where each node caches
a number of messages from different peers and uses their
logical stamps to determine whether a received message is
new or a replicated one. The secure binding of messages to
sessions, was achieved by adding the receiver’s identifier to
each message addressed to a particular peer. This, together
with XID and the support for message integrity, results in
a straightforward yet improved way for clients to manage
sessions. The revised authentication block is illustrated in
Figure 2.

Fig. 2. Improved SLP authentication block

III. D ECENTRALIZED SIP

The baseline SIP protocol [6] cannot be deployed in ad-
hoc networks because it strongly relies on centralized entities,
namely the SIP servers. SIP servers are needed for registering
users in the SIP network, and for locating the exact address
where a user can be contacted. This architecture is unfeasible
in ad-hoc networks, which are dynamic networks formed by
peers and where no support from pre-existing, centralized
entities is available. In order to enable SIP in ad-hoc networks,
we decided to embed a small subset of SIP proxy and registrar
server functionalities in all SIP end devices. This allows
performing in a decentralized and distributed fashion. We refer
to this solution as decentralized SIP (dSIP).

A. Overview of dSIP Operations

Decentralized operations mainly affect the way how SIP
users are discovered in the network. In ad-hoc networks, users
must first discover who is present in the vicinity (user names,
in SIP, called Address of Record, AOR), and the IP address
of the mobile node the user is available from. After this
information, referred to as binding, has been retrieved, SIP
sessions can be initiated and managed.

dSIP can operate in two modes, proactive and reactive. In
proactive mode, when a node enters the ad-hoc network, it
broadcasts a SIP REGISTER message containing the user’s
binding. The nodes that receive the REGISTER message store
the binding of the registering user and reply with an unicast
SIP 200 OK message addressed to the registering user’s IP
address. The message contains the binding for the replying
user. After this handshake, in absence of losses, all the nodes in
the network know the bindings of each other. The scheme uses
refresh messages and timeouts to update the status information
of users, and to counter the problems created by lost messages.

In the reactive mode, a node broadcasts the REGISTER
message only when the user wishes to initiate a session. The
replies to the message are used to build a list of users available
in the ad-hoc network. The amount of bandwidth used for
this signaling is tied to the size of the ad-hoc network. The
overhead of proactive dSIP is further affected by the arrival
rate of new nodes, while reactive dSIP is affected by the
frequency of session initiations.

An alternative approach to proactive dSIP uses SLP instead
of SIP for registering SIP users. A newcomer node sends a
broadcast SLP query for all the users running the service ”SIP”
and for the service attribute ”AOR”. The nodes reply with
an SLP message containing the IP address of the answering
node, i.e., where the service is available, and the value of
the requested attribute, i.e., the user name. Subsequently, the
querying user gets to know the bindings of the other users in
the ad-hoc network. However, in this scheme, the binding of
the querying node cannot be stored in the replying nodes, as
in the dSIP scheme. Thus, each node must periodically send
a broadcast SLP query in order to update the list of users
available in the ad-hoc network.

Once the server has stored in its cache the bindings of
the other users in the network, a list of available users can
be communicated to the application, and SIP sessions can
be initiated according to baseline SIP operations. The user
agent forwards the INVITE message to its outbound proxy
server, which in our scheme is located within the device itself.
This server, looks up from its internal bindings cache the IP
address for the AOR specified in the target of the INVITE,
and forwards the message directly to the intended recipient.

B. Software Modules for dSIP

Figure 3 shows the software modules of the implementation,
and how they interact with the other modules of the service
framework. Our implementation is based on theoSIP library
and the partysip server [7]. The low level SIP library performs
basic SIP-related operations, like message parsing or syntax

checks; it is utilized by the two upper modules. The user
agent (UA) module carries out the baseline SIP end device
functionalities. The server module enables the deployment of
SIP in ad-hoc networks, and acts as the predefined outbound
proxy server and registrar for the user agent.

The Session Management (SM) API decides when ad-hoc
functionalities must be used. The operation mode defines the
target IP address of the register message. If a registration
to a standard SIP server must be done, the API passes the
infrastructure network registrar IP address to the UA module.
To register to the ad-hoc network, the API passes the loopback
address to the UA module. Thus, the REGISTER message is
sent within the node to the local SIP proxy, which can then
broadcast the message to the ad-hoc network. This scheme
allows independence between UA and the local SIP server;
they are unaware of the fact that they reside in the same device.
The scheme allows using a dSIP device according to standard
SIP operations, as the server module is an independent addition
to the SIP stack of a user agent.

Application

SESSI AA

CacheSIP ServerUser Agent

Low level SIP library

Session Management
 API SESSI Service

 Discovery

Fig. 3. Software modules for decentralized SIP

The server module can access the Service Discovery service,
in order to retrieve the SIP users in the ad-hoc network. When
secure SIP operations are needed, both user agent and server
interact with the AA module. Mobile ad-hoc networks may
be formed by devices with low computing capacities; for such
a reason, embedded server functionalities are limited to the
most basic possible set, and the SIP server used as basis was
lightweight and modular, so only the desired features were
added to the implementation.

IV. SECURITY

The SESSI Authentication and Authorization (AA) Module
provides credential repository and access control for service
location and session management, and generic services such
as applications provided by the nodes of the network. Each
device in the SESSI enabled network has its own AA module
that is independent from the used security mechanisms.

A. Authentication and Authorization Credentials

Unlike the Bluetooth authentication, the SESSI AA module
authenticates or authorizes users, not just devices. Each user
has a base key pair stored in the AA module. The key pair can
be any asymmetric cryptographic key pair that is authenticated
in a trustworthy way. For example, the base keys can be
fetched beforehand from an external server or they can be

added manually by the user that has personally authenticated
the key pair and its owner.

In addition to the base keys, other keys and user names for
different kind of services, e.g., security parameter index (SPI)
and a key for the service discovery, can also be stored in the
database either beforehand or automatically in the first contact
after the authentication. These service keys are linked to the
base key of the user to whom they belong. Thus, the keys form
a hierarchical structure where the root key identifies a user
and leaf keys are used for different services. This hierarchic
structure makes trust management easier for the user.

B. Security Levels and Access Control

The SESSI AA module offers three levels for security:
none, authorization, and confidentiality. The first level does
not provide any security, and can be used, e.g., for transferring
public information from a device to another device. In the
authorization security level, the other user is authenticated
or authorized. This means that the user is either identified
or, if the identification information is not necessary, her right
to use the service is verified. In the confidentiality level, all
the communication is protected against eavesdropping and the
communicating parties are authenticated or authorized.

The SESSI AA module provides two-way access control
with three levels of security. Because devices in an ad-hoc
network provide services to each other, it is not enough to only
define which users can use a certain service. A cautious user
may also define which devices can provide the service for her
to use. First, like in any traditional access control mechanism,
a user can define an access control policy for her device: for
each service or resource offered, the user defines who can
use the service and the security level access is allowed. The
SESSI AA module provides access control also for the other
direction: the user defines the services that can be offered to
her device, and the security levels required for these services.
In addition to the fine grained access policy, the user can define
a network specific security level that overrules the service
policies if it requires higher security than the service policies.
For example, when the user does not trust all parties in a
specific environment, she can adjust her security policy by
just raising the network specific security level.

C. Structure of the SESSI AA Module

The SESSI AA Module consists of five internal parts as
is shown in Figure 4. The credentials are stored in a SQL
database. On top of the database, AA manager handles the
access control lists and provides functions to manage user
credentials and actions like signing, verifying and encrypting
the messages. A separate Crypto Service Module provides
the cryptographic functions used in the SESSI AA Module.
It is based on OpenSSL library. The service location and
session management modules, as well as, other SESSI-enabled
services and applications, can use the AA module through an
API. For the user, the SESSI AA module provides a graphical
user interface that can be used to add new credentials or
modifying the existing ones.

SQL Database Crypto ModuleAA Manager

GUI API
 SESSI AA

Fig. 4. Structure of the SESSI AA Module

The SESSI AA module helps a user to manage the access
control policy of his or her device in an ad-hoc network. It
provides one centralized place for all security management.
This supports users in the demanding tasks of trust and security
management and still allow the user to be aware of her
choices. We have implemented and tested a prototype of the
AA module for the SIP and SLP implementations.

V. PROTOTYPEIMPLEMENTATIONS

The presented schemes were implemented and analyzed on
our own ad-hoc network. We used several Linux-based laptop
computers connected to each other with 802.11b WLAN in ad-
hoc mode. In this first phase, we studied our distributed SLP
and dSIP independently, but coupled our SLP implementation
with the security management module.

Each laptop was running a chat application that used the
SD module to find nodes in the network and initiate a TCP
connection with each of them. The nodes were able to dynam-
ically enter and leave the ad-hoc network. Service discovery
for SIP was also tested and proven functional. It offers an
alternative operation model where SIP is using the SD module
to retrieve SIP user names and then initiates the sessions on
its own. The security enhancements have been tested with the
chat application. On authentication level only verified users
could join the chat and on confidentiality level the exchanged
service discovery messages were also encrypted. In addition
the logical timestamps prevented replay attacks efficiently.

The dSIP scheme was also evaluated and fulfilled the
expectations well. Sessions could be established among users
in the ad-hoc network, and complete mutual registrations
were archived, in reactive and proactive mode. Moreover, we
made a test of an interworking situation, where sessions were
established between a user inside the ad-hoc network, and one
in an external network. A gateway node provides access to the
external world from the ad-hoc network. The internal node
used a server in the external network as outbound proxy, and
the internal server module was not utilized. The test showed
the interoperability of the decentralized SIP stack with the
baseline SIP protocol stack. More advanced studies will be
performed during the second phase of the project.

Our analysis of use-cases for WLAN ad-hoc networks fo-
cused on multiparty communication and groups, and indicated
that the groups will probably be some tens of people. The
link-local WLAN is suitable for this type of networking. The
performance of the distributed SLP and SIP implementations
and the AA module were feasible in our tests with respect
to delay, latency and control overhead. Our tests included

less than 10 nodes, though, depending on the wireless link
technology, the system can scale up to hundreds of users.

VI. CONCLUSIONS ANDFUTURE WORK

This paper presented the first phase of the SESSI project.
The target was to study secure and decentralized service and
session management in ad-hoc networks. Our design is based
on extensions to SLP and SIP. In addition, the SESSI AA
module implements security. The designs were validated with
prototypes, and the experiments proved that our schemes were
able to fulfill the requirements and goals set for the project—
services and users were able to look for each other, and initiate
sessions and services. The presented schemes can be employed
both in wireless and wired small-scale IP-networks.

We have identified a number of very important and in-
teresting issues to study in more depth during the second
phase of our project. A topic of future study is extending the
peer-to-peer ad-hoc network to the Internet by, e.g., a peer
that opens a connection to the Internet over a 3G service
provider, or through a WLAN access point. The peer could
then advertise services offered by the fixed network, thus
resembling the function of a Directory Agent (DA). However,
the required implementation is different from conventional
DAs, which are normally used as the only means to find
certain services, whereas in our setting, some of the services
are known by DAs and some others only by the parties offering
them. Therefore, we plan to implement a peer-scaled DA,
which can be included in any (or all) peers. The Internet
connectivity also allows initiating sessions between users in
the Internet and in the ad-hoc network. The challenge is in
automatic configuration of the ad-hoc nodes to make use of
this connectivity. We also plan to extend the operation of dSIP
with the IETF Instant Messaging and Presence framework [8].
Another important issue would be the ability to run SLP and
dSIP in a multi-hop environment. Finally, adding support for
retrieving external security credentials stored in trusted third
parties, such as network operators, to the AA module will
make our architecture complete.

ACKNOWLEDGMENTS

This work is part of the SESSI project (2644/31/03), funded
by the National Technology Agency of Finland, Elisa Corpo-
ration, the Finnet Group, and Nokia Corporation.

REFERENCES

[1] Thomson, S., and Narten, T., IPv6 Stateless Address Autoconfiguration.
IETF, RFC 2462, December 1998.

[2] Ceshire, S., Aboda, B., and Guttman, E., Dynamic configuration of link-
local IPv4 addresses. Internet draft (work in progress), July 2004.

[3] Jeong, J. P., et al., IPv6 DNS discovery based on router advertisements.
Internet draft (work in progress), February 2004.

[4] Guttman, E., Perkins, C., Veizades, J. and Day, M., Service Location
Protocol, Version 2, IETF, RFC 2608, June 1999.

[5] OpenSLP web site athttp://www.openslp.org .
[6] Rosenberg et al., J.,SIP: Session Initiation Protocol, IETF, RFC 3261,

June 2002.
[7] The GNU oSIP library at http://www.gnu.org/software/

osip/osip.html .
[8] Rosenberg, J., A Presence Event Package for the Session Initiation

Protocol, IETF, RFC 3856, August 2004.

