
1

Using SPKI Certificates for Authorization in CORBA based
Distributed Object-Oriented Systems

Tuomo Lampinen

Helsinki University of Technology
Department of Computer Science
FI-02015 TKK, Espoo, Finland
tuomo.lampinen@hut.fi

Key words: CORBA, SPKI, certificate, authorization, access control

Abstract: CORBA based middleware has been used for the last couple of years mainly for bringing the old legacy
applications into the web age, but now this role has begun to change, as new applications are built on top of
it. Together with this change, legacy based access control along with other security functionality has to be
converted from the centralized mainframe world into the distributed Internet world. This change needs
solutions which are originally designed for distributed environments. Among these solutions are SPKI
authorization certificates defined by the IETF working group.

In this paper, we present a way of implementing authorization in CORBA based distributed applications
with SPKI certificates. We discuss the potential advantages of this approach compared with traditional
access control list based solutions and also describe an architecture which we have implemented in our
project.

1. INTRODUCTION

The powerful communications infrastructure
provided by the Internet has for the last few
years made it possible to build globally
distributed applications. The Internet has also
set new requirements for application
architectures demanding a different level of
modularity, flexibility and scalability. Various
middleware-based architectures have emerged
and attempted to overcome these problems by
providing the application developers with new
architecture solutions. Middleware is used to
provide a distributed run-time environment for

reusable software components. These
components typically offer well-defined and
uniform interfaces to various back-end systems
and databases thus hiding the heterogeneous
hardware and software environments used in
the legacy systems and making thin-client
architectures possible. The platform
independent Java programming language and
component-based design have been the two
driving forces behind this middleware
revolution.

So far, collecting business logic into
reusable components and wrapping legacy
applications have been the main uses for
middleware, but as the products and

2 Tuomo Lampinen

technologies mature, more and more of the
critical business applications are moving into
the middleware based architectures and losing
their ties to old legacy systems. This means that
the middleware based applications that have
depended upon the legacy systems for their
security have to implement equivalent security
services as those provided by the legacy
systems. However, simply reimplementing the
old security services is not the best approach,
because the Internet is decentralized unlike the
old mainframe-based enterprise world. Securing
the communications traffic in the Internet is
often based on the Secure Sockets Layer (SSL),
but few good alternatives for access control in
Internet-like distributed environments have
been proposed.

One possible alternative for distributed
access control is the use of SPKI certificates,
which in addition of having many other
desirable properties also support anonymity and
privacy, both of which have been jeopardized
by many other developments regarding the
Internet. The goal of this paper is to evaluate a
SPKI certificate based access control
architecture, which is suitable for large scale
distributed applications. Our implementation is
based on CORBA, which is an open industry
standard for distributed computing
infrastructure. The access control architecture
also shares the key benefits of CORBA – it is
language independent and interface centric thus
offering a lot of freedom for actual
implementation.

1.1 Authorization in distributed
environment

Traditionally authorization and access
control decisions are based on the use of access
control lists (ACLs). Access control lists are
usually implemented as database entries, in
which each resource is followed by a list of
subjects who are allowed to access the resource
[5]. Access control lists are a well-suited
solution for centralized client/server systems,
but they do not scale well in distributed

systems. The use of ACLs in distributed
systems usually means either that we have a
central storage, which easily forms a single
weak point and bottleneck in a large system, or
that we replicate the ACL database to multiple
distributed servers, which usually leads to
difficult update and synchronization issues,
especially because the integrity of the ACL
database is important and must thus be
protected against unauthorized modifications.
Access control lists also favour the use of
globally unique names mapped to access rights,
which makes it hard to support anonymity and
privacy with ACL based approaches.
Furthermore, access control lists lack the
possibility to delegate authorizations to a third
party, which is an important quality in
distributed systems. For example, an
information service in the web could sell access
rights to the information either directly, or
through retailers, who could delegate the access
rights further to paying customers.

All the weaknesses of access control lists
are also inherited into distributed applications,
if their security, especially authorization and
access control, is built on top of ACLs. This is
why we have implemented an alternative
architecture based on authorization certificates,
which avoid most of the weaknesses related to
ACLs. Authorization certificates are
conceptually similar to capabilities in that they
are used to map subjects to objects, but unlike
capabilities certificates are digitally signed,
which protects them against unauthorized
changes.

The rest of this paper is organised as
follows. Section 2 introduces CORBA and the
concept of distributed object computing.
Section 3 discusses the security features of
CORBA. In Section 4 we introduce SPKI
certificates and their advantages over more
traditional approaches in distributed access
control. Section 5 outlines our approach for
implementing SPKI certificate based access
control architecture in distributed CORBA
environment. Section 6 gives a more complete

Using SPKI Certificates for Authorization in CORBA based
Distributed Object-Oriented Systems

3

description of our architecture implementation.
Finally, Section 7 evaluates the implementation
against the given criteria and discusses some
ideas for further development. Section 8
presents our conclusions.

2. DISTRIBUTED OBJECT
COMPUTING AND CORBA

Distributed object computing utilizes the
paradigms of object oriented programming for
implementing distributed applications. This
supplies distributed applications with the
advantages of object oriented programming
such as polymorphism, inheritance and
encapsulation in distributed environments.

2.1 Distributed object computing
and middleware

Distributed object computing is based on the
idea of separating the interface of an object
from its implementation, as shown in Figure 1.

Local object

Interface Implementation

Client

Object interface

Server

Object implementation

Method calls

Responses

Distributed object

Figure 1. The concept of a distributed object

This seemingly simple concept has powerful
implications. Separating the interface means
that clients using the services provided by the
interface no longer have to know where the
actual implementation of the object is located or
how the implementation is done. These
properties are usually referred to as location
transparency and implementation transparency,
respectively. Because the implementation

details no longer matter to the client, the actual
implementation of the object may even be done
in another programming language and run on a
different hardware platform in another
computer.

User interfaces

Business logic

Data sources

Client tier

Middle tier

Data tier

Figure 2. A typical multi-tier architecture

Distributed object systems are by nature
multi-tiered. A typical division of tiers is
presented in Figure 2. This division separates
presentation, business and data management
logic into three logical tiers, which serve as the
basis of the software architecture. Business
logic is typically implemented with reusable
software components in the middle tier. These
software components are run in middleware
products, which offer the necessary services for
the software components such as managing the
lifecycle of the components, providing
transactions, handling security related issues
and offering administration services for the
components. The client tier typically consists of
the user interface and presentation logic. Data
sources on the other hand can be databases,
legacy applications or other external interfaces.

In the traditional client/server computing
model the middle tier and data tier are usually
located on a single physical machine and only
the client tier is distributed. Contrary to this, in
distributed object computing model all tiers can
be distributed, which results in many preferable
properties including:
• Flexibility: the logical tiers can be divided in

many ways in heterogeneous hardware and

4 Tuomo Lampinen

software environments. The implementation
of whole tiers can be changed without
affecting the rest of the architecture as long
as the interfaces remain the same.

• Scalability: separating the tiers offers better
resource sharing and load balancing between
multiple middleware servers along with thin-
client options. Specialized back-end
machines can also be used to provide highly
efficient data sources.

• Robustness: data sources and middleware
servers can be replicated making fail-over
possible thus providing high availability
systems.

• Reuse: separating business logic from user
interfaces and data sources into independent
software components offers many
opportunities for easier reuse. Also many
common features in applications such as
security related services need only be
implemented once thus reducing the risk of
incorrect implementations.

2.2 CORBA

One of the most popular middleware
architectures is Object Management Group’s
(OMG) Common Object Request Broker
Architecture, i.e., CORBA [10]. CORBA is
currently an industry standard for open
distributed computing architecture. Some of the
main strengths of CORBA are its language and
platform independence, which make it well
suited for heterogeneous environments such as
the Internet. Compared with some other
middleware technologies, CORBA is also quite
mature a technology and has already proved its
value in enterprise environments. CORBA has
good support for distributed object computing
paradigms like location and implementation
transparency and provides a well defined set of
basic object services [8] for objects such as
object lifecycle handling, events, transactions
and security. However, CORBA itself is only a
specification and it is left up to vendors to
transform the specification into working,
interoperable products called Object Request

Brokers (ORBs). An ORB is an object bus,
which allows client objects to communicate
with remote objects by invoking their methods.
The communication between ORBs is based on
the Internet Inter-ORB Protocol (IIOP), which
enables interoperability between different ORB
vendors

3. SECURITY AND ACCESS
CONTROL IN CORBA

Distributed systems are by nature more
vulnerable to security breaches than the more
traditional systems, as there are more places
where the system can be attacked. Compared to
traditional client/server systems, security in
distributed object systems is also more
challenging, because distributed objects can
play both client and server roles, so a simple
division between trusted server components and
untrusted client components no longer works.

3.1 The CORBA Security Service

Security in CORBA is handled by the
Security Service, which belongs to the CORBA
Object Services [8] defined by OMG. The
Security Service defines a framework with
functionality for authentication, authorization,
encryption and auditing, thus meeting the basic
requirements for protecting sensitive data and
controlling user access in applications. The
interfaces defined are generic enough to allow
the use of many different underlying security
technologies to be used in securing CORBA
applications. The Security Service can be
implemented to conform to one of the two
levels of security:
• Security Level 1 is meant for applications

which are unaware of security and for those
having limited requirements to enforce their
own security in terms of access control and
auditing.

• Security Level 2 has all the features of
Security Level 1 and also allows applications
to control the security provided at object

Using SPKI Certificates for Authorization in CORBA based
Distributed Object-Oriented Systems

5

invocation and includes administration of
security policies.

CORBA security is based on the following
objectives [8]:
• Maintain confidentiality of data and system

resources.

• Preserve data and system integrity.

• Maintain accountability.

• Assure data and system availability.

• Provide security across a heterogeneous
system where different vendors may supply
different ORBs.

• Provide purely object-oriented security
interfaces.

• Use encapsulation to promote system
integrity and to hide the complexity of
security mechanisms under simple interfaces.

• Allow polymorphic implementations of
objects based on different underlying
mechanisms.

• Ensure that object invocations are protected
as required by the security policy.

• Ensure that the required access control and
auditing is performed on object invocation.

As these objectives show, the CORBA
Security Service is intended to be very flexible.
Especially, the CORBA Security Service Level
2 offers applications many options for
customizing the security implementation. This
customization is based on a security context
object called Current, which represents the
current execution context in a client/server
interaction and can be used to obtain both the
client and server credentials. This context is
checked when a method invocation request
enters the ORB environment and on exit of
those requests on the object implementation
side, as shown in Figure 3. This security
context can also be extended for application
specific security needs, for example, to provide
customized audit logs or access control.
Because the security context related to method

invocations is implicit, changes to applications’
business logic are minimal.

Client Server

Client side security on invocation,
security association, access control,

message protection, audit

Target side security on invocation,
security association, access control,

message protection, audit

ORB

Request Request

Figure 3. Method invocation related security options [8]

Access control in CORBA is checked by an
AccessDecision object, which is the CORBA
world version of the reference monitor concept
[5]. The AccessDecision object provides a
method called access_allowed, which
determines whether the client’s invocation is
allowed. The access decision chain is shown in
Figure 4. This access control can be performed
by object or by method basis. Extending this
interface is the basis for customized
authorization and access control
implementations as described in Sections 5 and
6.

Client Server Current AccessDecision

invoke

access_allowed

get_attributes

Figure 4. Access decision in invocations [16]

6 Tuomo Lampinen

3.2 The usage of CORBA
Security Service

Despite the rich set of features offered,
many CORBA based distributed applications
don’t take advantage of the Security Service.
The most common reasons for this are the
following:
• Lack of proper Security Service

implementation in ORB implementations –
Many CORBA products do not provide a
proper implementation of the CORBA
Security Service Level 2.

• Only encryption of network traffic is used –
Many CORBA products offer easy
encryption of inter-ORB network traffic with
IIOP over SSL [9]. This has the advantage
that the developer usually doesn’t have to
make any changes into the application code,
because SSL provides transparent encryption
to end-users.

• Legacy application based security – Many
CORBA based applications avoid
authentication and authorization issues by
simply tunnelling the user credentials to the
legacy systems, which provide the necessary
services for authorization and access control.
This is usually the case in financial
applications developed in banks and
insurance companies where the security is
largely implemented into the legacy systems.

However, new applications being developed
are becoming more distributed and severing
their ties to old centralized legacy systems. This
means that we can no longer trust that all
security issues are being handled by legacy
systems in the visible future. Using SSL with
IIOP takes care of the important issue of
securing the inter-ORB traffic of remote object
method invocations, but another major security
issue, namely access control, is still left to be
implemented. Simply porting access control
implementations and policies from the
centralized legacy systems into the distributed
object world is often not the best approach,
because many access control solutions that

work well in centralized systems become
cumbersome in distributed systems lacking the
necessary scalability [11]. One of the well-
researched alternatives for implementing access
control in distributed environments is the use of
digital certificates, which are signed statements
about the properties of entities. Because of the
flexibility offered by the CORBA Security
Service regarding the implementation of the
access control policy, digital certificates can be
adopted to function as the basis of access
control in CORBA.

4. SPKI CERTIFICATES FOR
AUTHORIZATION

A public key infrastructure (PKI) is a
system providing a mechanism for publishing
public-key values bound to some other pieces
of information such as a name or an
authorization. To support the interoperability of
applications, PKIs define certificate formats and
semantics, as well as the process of verifying
that a certificate is valid. [18]

4.1 SPKI certificates

Simple Public Key Infrastructure [1, 2, 3] is
an Internet draft standard which defines public
key certificates for authorization. SPKI is
intended to provide mechanisms to support
security in a wide range of Internet applications
and to solve many of the problems regarding
authorization in distributed environments. Some
of the main ideas behind SPKI certificates are
its emphasis on decentralization and its usage of
public keys instead of names as principals [2].
SPKI certificates don’t set any restrictions on
the permissions that can be defined. Some
examples about SPKI certificates are given in
[3]. The SPKI certificate structure is shown in
Figure 5.

Using SPKI Certificates for Authorization in CORBA based
Distributed Object-Oriented Systems

7

key1 key2 Can delegate ?

rights

validity

subjectissuer

authorization

delegation

validity

Signed with issuer’s private key

Figure 5. SPKI certificate structure

An SPKI certificate is a signed message
which consists of five security relevant
elements [1]: issuer, subject, delegation,
authorization and validity. The certificate is
signed by issuer’ s private key and grants the
specified authorization to subject. The validity
field describes the conditions under which the
certificate can be considered valid. This validity
field is usually given as a time range, but other
on-line conditions can also be used. The
delegation field offers boolean control for
delegation defining whether the authorization
can be delegated by the subject to a third party.

4.2 Advantages of SPKI
certificates in distributed
environments

SPKI certificates have some important
characteristics which make them suitable for
being the basis of authorization in distributed
environments. These advantages include:
• Decentralization – Certificates can be issued

freely by anyone, so issuing certificates is not
restricted to a central authority. Many other
standards, such as the X.509 standard [15]
assume that there is a single certification
authority (CA) hierarchy creating certificates
thus limiting the trust model.

• Delegation of authorization – Access rights
can be delegated, in which case a chain of
certificates is formed. Delegation of access
rights makes the system much more flexible.
For example, parents having authorization to
a certain bank account could delegate this
authorization to their children, while at the
same time limiting the maximum single

withdrawal amount to a value specified in the
authorization field.

• Flexible permissions – Authorizations and
permissions can be freely defined and are not
restricted to any predefined set. However,
while this approach provides maximum
flexibility, stardardization of common
permissions is preferable in order to promote
certificate interoperability. Some examples
of possible certificate formats are given in
[3].

• Validity – The issuer of the certificate can
specify a time period or other on-line
conditions under which the certificate is
valid. This offers more fine-grained control
for delegation along with easier access rights
maintenance, and can be used to minimize
potential damage in case a certificate is
compromised.

• No name bindings – Because certificates are
bound to keys instead of names, they can be
used directly without first finding a public
key corresponding to a given name. Binding
certificates to keys also offers a better
protection of privacy, since certificates can
be used anonymously when a subject
generates a temporary key for the issuer to be
used in a certificate. These temporary
identities can be used to promote privacy as
discussed in [12].

These advantages combined make SPKI
certificates a powerful alternative to access
control lists (ACLs) discussed in Section 1.
Unlike ACL databases, certificates can be
published without any encryption. When a
certificate is used in a request, the request is
signed by the subject’ s private key in order to
prove that the user is entitled to use the
certificate. Because certificates are signed, they
can’ t be modified or used by any third party
even if they are completely public. This means
that certificates can be distributed directly to
end-users. In large-scale systems, where
delegation may form long certificate chains, it
is probably preferable to store part of the

8 Tuomo Lampinen

certificates to some distributed storage.
However, because this database doesn’ t require
heavy protection against modifications, existing
technologies such as Domain Name Servers
(DNSs) can be used for storage [17].

5. IMPLEMENTING
AUTHORIZATION WITH
SPKI CERTIFICATES IN
CORBA

There are no doubt many possible ways of
combining SPKI certificates with CORBA
Security Service. Issues such as the granularity
of access control and transparency to
application developers can be tackled in many
ways. While our approach tries to be as general
as possible, other solutions may work better for
different kinds of CORBA environments.

5.1 Environment

The model of our environment is based
upon the situation shown in Figure 6. It consists
of a server offering resources to retailers,
retailers reselling the resources of the server,
and clients, who wish to buy and access the
services offered by the resources. This kind of
environment sets authorization requirements,
which can easily be solved by using SPKI
certificates. Basically the server gives an
authorization certificate to a retailer, which
delegates the authorization provided by the
server’ s certificate to clients against a fee.

Retailers

Resource

Server

Clients

Buy services Offer services

Use services

Figure 6. Typical use case for the architecture

This use case model is transformed into the
CORBA environment shown in Figure 7, which
is used in our implementation. The environment
consists of five main components, which are
resource server, reseller, client, resolver and
resource factory. In a typical configuration
there are multiple instances of clients and
resellers.

Client Reseller

Resolver

Resource
Server

Resource
Factory

2.

1.3.

4.

5.

6.

9.

8.

7.

Resource

Figure 7. CORBA environment

Resellers are third parties, which sell the access
to the resources to clients. This is done by
delegating the certificate obtained from the
resource server to the client after the client has
provided its public key. Delivering the
certificates to clients can be done, for example,
over the Internet, in which the client could pay
for the certificate with anonymous electronic
cash.

Clients represent the end-users, who are
interested in the services provided by the
resources. After the client has got its certificate
from a reseller, it stores the certificate locally
and uses it in all subsequent communication
with the resource server. This means
establishing a connection with the resource
server and requesting an object reference to a
resource object.

Resource server is the server which handles the
initial interaction with clients requesting the
resources. The resource server works as a proxy
for the resource factory, and is responsible for

Using SPKI Certificates for Authorization in CORBA based
Distributed Object-Oriented Systems

9

filtering out unauthorized requests. In case that
the client’ s authorization for the requested
resource is verified successfully, the resource
server requests a new resource object instance
from the resource factory and passes its
reference to the client.

Resolver is responsible for the hard work of
trying to create a valid certificate chain
providing authorization for the requested
resource. This means finding a chain in which
the issuer of the first certificate is the resource
server and the subject of the last certificate is
the client requesting the resource. The resolver
also performs checks to verify the validity field
of each certificate and to analyze the
relationships between the permission tags in the
certificates. Typically only a small piece of this
chain is provided by the client, so the resolver
has to use some sort of a storage from which it
fetches the certificates when trying to form the
chain. Examples of this kind of storage would
include DNS based solutions [17, 18] or X.500
directory [14] and LDAP [19] based solutions.

Resource factory is responsible for creating and
managing instances of resource objects. The
resource factory also accepts the requests for
the resource instances from the clients and
performs the desired online checks for each
call. Physically the resource factory may run on
the same machine as the resource server, but
this is not mandatory.

Resource objects offer service interfaces for
various computing resources. Some possible
resources for this kind of systems would be
digital content servers, data processing services
on a large supercomputer or information
services. In addition to implementing a
common resource interface, each resource
object also offers a resource specific service
interface, which provides the necessary services
for the clients.

5.2 Implementation choices

One of the issues to be decided in this kind
of a system is the granularity of the access
control. CORBA based applications typically
take advantage of the factory pattern [6], in
which one object called the factory or home is
responsible for creating, finding and managing
instances of one class of objects. One example
would be a BankAccountFactory object, which
would provide a method called FindAccount.
FindAccount would take an account number as
a parameter and initialize a new instance of the
BankAccount class based on the data fetched
from the host’ s database. Therefore a factory
object seems a natural place for adding the
access control. The permission tag in the
client’ s certificate contains the resource name,
i.e., the resource factory class, and the
parameters for the resource creation, for
example, (tag (resource (name
“BankAccountFactory”) (account
“12345678”) (operation “ViewBalance”)
(operation “ViewTransactions”))). In the
environment described in Figure 7 the resource
server is responsible for verifying the
authorization, after which it passes the
parameters in the permission tag to the given
resource factory. Because factories are usually
used to create nearly all server side objects, the
granularity of access control can be freely
chosen by determining which factories require
an authorization in order to be used.

Perhaps the largest issue in the
implementation of the architecture is to decide
when and where to use the CORBA Security
Service functionality. The starting point of the
architecture is to use CORBA Security Service
whenever possible, because this avoids
redundant work and makes most of the security
implementation transparent to the application
developers by avoiding the need to pass
security related information explicitly. This
means using the security context, i.e., the
Current object, to transparently pass the
certificates from each client to the server. This

10 Tuomo Lampinen

has the advantage that each client can simply
add all its available certificates for the
application in question to the security context as
a start up procedure. After this the client can
use the services provided by the server without
having to add additional parameters to each
method call for passing authorization
information. This approach is shown in Figure
8.

Client Resource Server

Current

Method call

Figure 8. Passing certificates in the Current object

After the method call is received by the
server, all security aware objects on the server
side are responsible for obtaining the client’ s
certificates from the security context and
performing the necessary checks before
granting access to the resources. This can also
be done transparently, by using a customized
access control policy for the factory objects.
The access control policy implements the
AccessDecision interface, and uses the resolver
to verify that the certificates obtained from the
security context of the method invocation are a
part of a valid certificate chain. If the
AccessDecision object can verify the
authorization with the help of the resolver, it
lets the method call pass to the resource server.

Resource ServerORB

Resolver

AccessDecision

Client request

Figure 9. Checking authorization on the server

Another issue in the implementation is to
decide how the client proves that it is the
rightful owner of the public keys for which the
certificates have been issued. Normally this
would be done with a challenge-response
approach, in which the client signs some piece
of information provided by the resource server
during the connection establishment. ISAKMP
[4] could also be used for this purpose.

6. IMPLEMENTATION
DESCRIPTION

Our implementation relies on standard
CORBA features and is implemented in Java.
Due to the limitations concerning the
availability of ORBs supporting the CORBA
Security Service Security Level 2 outside the
US, we have implemented some parts of the
CORBA Security Service specific functionality
ourselves. The use of SPKI certificates and the
resolver is based on existing implementations
[7, 17, 18], so this section describes only the
CORBA specific parts of the implementation.
The implementation also assumes that the
network communication between the
components situated on separate physical
machines is encrypted and protected against
unauthorized modifications. The easiest way of
performing this is to use IIOP over SSL, but
other solutions such as IPSec [13] could also be
used if they are supported by the environment.

6.1 Adding certificates to the
Current object

During the initial start up procedure of the
client application the client’ s SPKI certificates
are added to the security context. For simplicity
and because determining the actually required
certificates for a particular method invocation is
hard, all certificates are added to the security
context at once. The certificates are added as
security attributes to the client’ s credentials
object, which is contained in the
SecurityLevel2::Current object. For this the

Using SPKI Certificates for Authorization in CORBA based
Distributed Object-Oriented Systems

11

certificates have to be transformed into their
encoded transmission format, in which they are
represented as simple byte sequences. The
client performs the whole operation by first
creating its credentials with the authenticate
method of the
SecurityLevel2::PrincipalAuthenticator object.
Because we are interested in authorization, we
can setup the authentication to use anonymous
SSL authentication. After this the client obtains
its own credentials through the own_credentials
attribute of the Current object. Finally the actual
certificates are added to the credentials by
calling the set_privileges method for it and
passing the certificates as security attributes.
When this is done the client can start using the
services on the server and the certificates are
always transparently passed along with the
method call parameters.

6.2 Verifying the certificates

On the server side we have implemented an
AccessDecision object, which takes care of
passing the received certificates to the resolver
for verification. The AccessDecision object is
automatically called for each method call, when
it is set as a new security policy for the resource
server by calling the set_policy_overrides
method for the resource server. This means that
authorization checks are performed
automatically before the method call reaches
the resource server object.

The IDL interfaces for the access_allowed
method and the resolver are shown in Figure
10.

// AccessDecision::access_allowed
boolean access_allowed(
 in SecurityLevel2::CredentialsList cred_list,
 in Object target,
 in CORBA::Identifier operation_name,
 in CORBA::Identifier target_interface_name
);

// Resolver interface
interface Resolver {
 // Verify the certificate chain from the issuer to
 // the subject for the given resource. Return true
 // and the verified chain on success or false if
 // verification fails.
 boolean verifyChain(
 in PublicKey issuer,
 in string resourceName,
 in SPKICertificateSequence subchain,
 out SPKICertificateSequence verifiedChain);
};

Figure 10. AccessDecision and Resolver interfaces

The access_allowed method gets the client’ s
credentials, from which the certificates can be
extracted by calling the get_attributes method.
The AccessDecision object then calls the
Resolver, passing as parameters the resource
server’ s public key, the resource name
corresponding to the object for which the
operation is invoked and the extracted
certificates. The job of the resolver is to find a
certificate chain for the resource from the issuer
to the subject. Typically the minimum length of
this chain is at least two certificates, one from
the resource server to the reseller, and one from
the reseller to the client. The client may have
several public keys, so the final public key in
the verified chain may be any of the public keys
of subjects in the provided certificates. As
stated earlier, the client has to prove its
ownership of these keys during the session
establishment. In case that the resolver succeeds
in forming a valid certificate chain, it will
return the certificates in this chain so that the
resource server can create a reduction certificate
to be passed back to the client for storing.
Creating a reduction certificate means that the
resource server issues a new certificate directly
to the client, in which the authorization and
validity fields are intersections of all the
authorization and validity fields in the chain
respectively. This optimization means that in
general the resolver doesn’ t have to do heavy

12 Tuomo Lampinen

processing for long certificate chains every
time.

Using the AccessDecision object to
implement a custom access control policy has
one serious disadvantage: when the server
invokes the access_allowed method, it doesn’ t
pass the parameters of the original method
invocation to it. This means that the request
parameters still have to be checked by the
resource server after the resolver succeeds in
finding a valid certificate chain.

7. EVALUATION AND
FUTURE WORK

As discussed in section 4.2, the advantages
of SPKI certificate based authorization can be
summarized as follows: decentralization,
delegation of authorization, and support of
anonymity when accessing resources. The
architecture presented in sections 5 and 6
supports all these features and offers the desired
level of granularity; however, there are several
things which could be improved.

The first problem has to do with the
authorization field of an SPKI certificate. In
order to delegate only subsets of permissions,
the resolver would have to understand the
semantic content of the authorization field,
which can only be achieved in very restricted
special cases. The easiest, but also most
restrictive approach, would be to require that
the authorization field stays the same for the
whole chain. This would make the job of the
resolver much easier, because authorization
fields would only have to be tested for equality.
Another more sophisticated approach would be
to include an additional field to all certificates.
This field would contain the address of the
server, which could be used to compare the
authorization field, i.e., to test for equality and
subsets. This solution would need a standard
interface, which would take two authorization
fields as input parameters and return a code
describing the relationship between them.
While offering better control of delegation and
making the job of the resolver easier, this

approach would increase the communication
overhead significantly and probably add new
security weaknesses to the system.

The second problem concerns the use of the
security context object of CORBA to pass the
credentials containing the certificates
transparently from the client to the server. In
our implementation all certificates have to be
stored in this context at the client program start
up. This is required because we can’ t always
intercept the method calls of the client and add
the necessary certificates to the security context
on the fly before transmitting the actual call to
the server. This kind of client side interception
would face the same problem of semantics as
the resolver, when it would try to decide which
certificates would have to be provided with
each call. Storing all certificates in the security
context could make it quite large, in case that
the client has a lot of certificates stored locally.
Even though we use elliptic curve cryptography
for keys and signatures in order to save space,
each certificate still takes around half a kilobyte
in size.

The third problem has to do with the online
checks concerning the requests, which the client
makes for the resource object. Performing these
checks could affect the response time of the
services provided by the resource significantly.
These kind of checks would have to be
performed, for example, in case that the client is
entitled to use the resource only a certain
number of times. One way to optimize online
checks is to make each check return a period of
time during which the check doesn’ t have to be
performed [20]. Another more efficient but less
secure alternative would be to use a simple
session time limit for the connection between
the client and the resource.

8. CONCLUSIONS

In this paper we have presented an SPKI
certificate based alternative for handling
authorization in CORBA based distributed
applications. As shown, the CORBA Security
Service is very flexible, and is easily extended

Using SPKI Certificates for Authorization in CORBA based
Distributed Object-Oriented Systems

13

to handle certificate based authorization.
Compared to access control list based
approaches, certificates provide much better
scalability and flexibility in distributed systems.
Privacy protection and delegation of
authorizations, both of which become possible
with certificates, are also becoming more
important as the Internet continues to grow.
Despite the problems encountered with
certificate based approaches, we believe that
certificates show great promise in the field of
distributed access control.

REFERENCES

[1] C. M. Ellison, B. Frantz, B. Lampson, R. Rivest, B.
M. Thomas and T. Ylönen, Simple Public Key
Certificate, Internet-Draft draft-ietf-spki-cert-
structure-05.txt, work in progress, Internet
Engineering Task Force, March 1998.

[2] C. M. Ellison, B. Frantz, B. Lampson, R. Rivest, B.
M. Thomas and T. Ylönen, SPKI Certificate Theory,
Internet-Draft draft-ietf-spki-cert-theory-02.txt, work
in progress, Internet Engineering Task Force, March
1998.

[3] C. M. Ellison, B. Frantz, B. Lampson, R. Rivest, B.
M. Thomas and T. Ylönen, SPKI Examples, Internet-
Draft draft-ietf-spki-cert-examples-01.txt, work in
progress, Internet Engineering Task Force, March
1998.

[4] D. Maughan, M. Schertler, M. Schneider, J. Turner,
Internet Security, Association and Key Management
Protocol, Internet-Draft draft-ietf-ipsec-isakmp-
10.txt, work in progress, Internet Engineering Task
Force, July 1998.

[5] E. Amoroso, Fundamentals of Computer Security
Technology, Prentice Hall, Englewood Cliffs, New
Jersey, 1994.

[6] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented
Software, Addison Wesley, 1995.

[7] J. Partanen, P. Nikander, Adding SPKI Certificates to
JDK 1.2, Proceedings of the NordSec’ 98, the Third
Nordic Workshop on Secure IT Systems, Trondheim,
Norway, November 1998.

[8] OMG, CORBAservices: Common Object Services
Specification, December 1999.

[9] OMG, IIOP over SSL specification, February 1997.
[10] OMG, The Common Object Request Broker:

Architecture and Specification, July 1998.
[11] P. Nikander, J. Partanen, Distributed Policy

Management for Java 1.2, Proceedings of Network
and Distributed System Security Symposium,
February 4-5, 1999, San Diego, California.

[12] P. Nikander, Y. Kortesniemi, J. Partanen, Preserving
Privacy with Certificates in Distributed Delegation,
Proceedings of 1999 International workshop on
Practice and Theory in Public Key Cryptography,
March 1-3, 1999, Kamakura, Japan.

[13] R. Atkinson, Security Architecture for the Internet
Protocol, RFC 1825, August 1995.

[14] Recommendation X.500, The Directory: Overview of
concepts, models and service, ITU-T, 1993.

[15] Recommendation X.509, The Directory
Authentication Framework, volume VIII of CCITT
Blue Book. CCITT, 1988.

[16] R. Orfali, D. Harkey, J. Edwards. Instant CORBA,
John Wiley & Sons, 1997.

[17] T. Hasu, Storage and retrieval of SPKI certificates
using the DNS, Master's thesis, Helsinki University
of Technology, Telecommunication Software and
Multimedia Laboratory, Otaniemi, Finland, April
1999.

[18] T. Hasu, Y. Kortesniemi, Implementing an SPKI
Certificate Repository within the DNS, Unpublished
manuscript, Helsinki University of Technology,
Telecommunication Software and Multimedia
Laboratory, Otaniemi, Finland, August 1999.

[19] W. Yeong, T. Howes, S. Kille, Lightweight Directory
Access Protocol, RFC 1777, March 1995.

[20] Y. Kortesniemi, T. Hasu, J. Partanen, A Revocation,
Validation and Authentication Protocol for SPKI
Based Delegation Systems, to appear in Proceedings
of the 2000 Network and Distributed Systems
Security Symposium, San Diego, California, Internet
Society, February 2000.

