
VERKKOKE: Learning Routing and Network Programming
Online ∗

Anton Alstes
Helsinki University of Technology

P.O. Box 5400
FIN-02015 TKK, Finland

aalstes@tml.hut.fi

Janne Lindqvist
Helsinki University of Technology

P.O. Box 5400
FIN-02015 TKK, Finland

janne.lindqvist@tml.hut.fi

ABSTRACT
We present an Online Teaching Environment (OTE) that
supports “learning by doing” philosophy in teaching telecom-
munications software and routing. “Learning by doing” is
achieved by giving students a programming assignment that
introduces them to socket programming and gives them the
opportunity to practice implementing simplified routing pro-
tocols. The OTE creates individual assignments for stu-
dents, accepts solution submissions via the Internet, and,
finally, checks the assignments automatically. The system
also notifies the students of possible mistakes in their solu-
tions, so they can learn from their mistakes, fix them and
resubmit the corrected solutions. The teacher needs only
to start the system when the course begins and verify the
assignment results when students have finished their work.

The OTE is compatible with modern learning manage-
ment systems through its adherence to the Sharable Con-
tent Object Reference Model (SCORM) specification. The
OTE supports intricate and realistic programming assign-
ments through representative topology generation and so-
phisticated network simulation.

Categories and Subject Descriptors
K.3.1 [Computers and Education]: Computer Uses in
Education—computer-managed instruction (CMI), distance
learning

General Terms
Algorithms, Human Factors, Theory

Keywords
Learning environment, programming, routing

∗The online learning environment described in this pa-
per has previously been introduced as a one-page ab-
stract [9]. The implementation can be downloaded from
http://www.tml.tkk.fi/Research/VERKKOKE/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ITiCSE’07, June 23–27, 2007, Dundee, Scotland, United Kingdom.
Copyright 2007 ACM 978-1-59593-610-3/07/0006 ...$5.00.

1. INTRODUCTION
As the importance of the Internet continues to increase,

telecommunications software and routing become ever more
essential topics for computer science students to learn. Un-
derstanding how the Internet and telecommunications net-
works in general function is imperative for the computer
scientist or engineer in a world where interconnected com-
puters enable applications that play such a significant part
in our everyday lives: the World Wide Web, electronic mail,
instant messaging, Internet telephony, video conferencing,
to name only a few.

Various teaching methods can be used to educate our fu-
ture computer scientists and engineers in the areas of telecom-
munications software and routing. The traditional method
has been to use lectures, hand-outs, books and written as-
signments as teaching aids. These traditional teaching aids
will probably continue to be useful also in the future, but the
process of learning telecommunications software and routing
can certainly benefit from more innovative approaches.

To support “learning by doing” teaching philosophy on
the Computer Networks course in Helsinki University of
Technology, a requirement for passing the course is a pro-
gramming assignment. The programming assignment in-
troduces the student to socket programming and gives the
student the possibility to practice implementing simplified
routing protocols.

The solutions to the programming assignments have previ-
ously been demonstrated to assistants and the reports were
submitted as paper printouts and all students have done the
same assignment. The students have complained that the
submission method is out-of-date and inappropriate for a
course about computer networks since the course curricu-
lum includes many examples of applications that could be
used to submit the assignments over the Internet.

To answer to the above requirements and to reduce the
work load of the course personnel without hindering the
students’ learning process, we have implemented an Online
Teaching Environment (OTE) for the computer networking
course.

The OTE creates individual assignments for students, ac-
cepts solution submissions via the Internet, and, finally,
checks them automatically. The system also notifies the
students of possible mistakes in their solutions. This way,
the students can learn from their mistakes and fix them and
resubmit the corrected solutions. The goal of the imple-
mentation is that the teacher only needs to start the system
when the course begins and verify the assignment results
when students have finished their work.

91

The rest of the paper is organized as follows: the next sec-
tion discusses related work, that is, other software for teach-
ing networking and/or programming. Then, we describe the
implementation of the OTE, followed by discussion, that is,
we asses its suitability for teaching telecommunications soft-
ware and routing and comparare it with other systems. Fi-
nally, we conclude the paper and discuss work to be done in
the future.

2. RELATED WORK

2.1 The Virtual Network System
The Virtual Network System (VNS) [4] is a teaching tool

developed at Stanford University. Like the OTE, it was
designed to support programming assignments of an under-
graduate introductory networking course.

Like the OTE, VNS can simulate multiple network topolo-
gies and provides a server that accepts connections from
clients. VNS logically makes the clients operate as hosts on
the simulated network topologies. VNS achieves this by us-
ing a client side component which is a set of libraries, that
the student’s client code must use. The libraries handle in-
teracting with the VNS server, over TCP. They provide to
the student’s code the raw Ethernet traffic received by the
simulated virtual host, as well as allow the student’s code
to inject packets back into the network.

According to Casado and McKeown [4], VNS can be used
in any project requiring low-level network access, e.g. in
teaching the implementation of a router. Because VNS
makes students see the raw Ethernet layer, students’ im-
plementations must support low-level functionality such as
address resolution or checksum calculation.

2.2 J-Sim
J-Sim [16] is a simulation environment written in Java. It

is based on an autonomous component architecture (ACA),
similar in its design to integrated circuits (IC). The anal-
ogy is between hardware modules composed of IC chips and
software systems built from ACA components.

J-Sim includes a generalized model of packet switched net-
work, built on top of the ACA that can be used for network
modeling and simulation. Using the components of the net-
work model, one can create simulated networks consisting
of nodes (end hosts or routers) and links. J-Sim provides
components for defining the inner structure of nodes, such
as their network interfaces, routing table, routing protocols,
transport protocols and applications.

J-Sim includes a Tool Command Language (TCL) script-
ing environment that allows setting up simulation scenarios
with the desired topologies, node structures and network
protocols. Thus it could be used as a tool for teaching net-
work protocols such as dynamic routing protocols. Teaching
network programming, on the other hand, with J-Sim alone,
is more difficult, because J-Sim does not provide a server for
students’ clients to connect to.

2.3 Ludwig
Ludwig [15] is a web-based programming tutoring and as-

sessment system, developed at Penn State University. It
provides a controlled text editor, implemented as a Java ap-
plet. Students write their programs using the editor, which
does not allow pasting text from other sources. When the
first version of the program is ready, the student submits it

for analysis. The system first attempts to link and compile
the program. If this fails, the failure messages are shown
to the student, who makes the required modifications to
the program and resubmits. Upon successful compilation,
Ludwig does a style check to the program. Stylistic items
that are checked include proper indentation and cyclometric
complexity.

Ludwig then runs the program with input data prepared
by an instructor or by the student. The same input is
given to a solution program developed by the instructor and
the outputs of the programs are compared. Differences are
shown to the student, who can either submit the program
for grading or modify it to get a better result. When the
student submits the program for grading, a different data
set is used as input, to prevent students from simply sub-
mitting a program that prints the expected output without
actually processing the input.

Although Ludwig was designed for teaching introductory
programming, it could be conceivable to use it for teaching
network programming as well.

2.4 TRAKLA2
TRAKLA2 [8] is a framework for building interactive algo-

rithm simulation exercises. The exercises are based on Java
applets that visualize data structures. Students are expected
to simulate the operation of algorithms by using drag-and-
drop operations to manipulate the visual algorithm repre-
sentations. The data structures should be changed by the
students as the algorithm in question would do. The result-
ing sequence of data structure states form the student’s an-
swer to the given problem. TRAKLA2 automatically grades
the student’s solution and provides a model solution, which
is an animation that visualizes the operation of the algo-
rithm step by step.

Since TRAKLA2 is designed for teaching algorithms and
data structures in general, it is a useful aid in teaching algo-
rithms used in routing protocols, e.g. Dijkstra’s algorithm.

3. ONLINE TEACHING ENVIRONMENT
The OTE supports the programming assignment of our

introductory networking course by providing a socket inter-
face that clients programmed by students can connect to. To
allow students to practice implementing simplified routing
protocols, the server emulates a network consisting of sev-
eral routers. A student’s client represents one router whose
routing table is calculated on the basis of the information
sent by the server.

The OTE creates individual assignments for students, ac-
cepts solution submissions via the Internet, and checks them
automatically. The system also notifies the students of pos-
sible mistakes in their solutions. This way, the students
can learn from their mistakes, fix the mistakes and resubmit
the corrected solutions. The teacher only needs to start the
system when the course begins and verify the assignment
results when students have finished their work.

More specifically, the OTE has the following capabilities:

• It generates network graphs that are used with the
routing algorithms.

• It provides a management interface for enrolled stu-
dent management. This web-based interface also pro-
duced reports on student assignment statuses.

92

• It provides a standard network socket interface that
acts as a server to client programs developed by the
students.

• It implements abstractions of two routing protocols:
one of the distance vector family and one of the link
state family. Abstractions of real routing protocols
(such as Routing Information Protocol (RIP) [7] or
Open Shortest Path First (OSPF) [11]) are used to
communicate the basic ideas without overwhelming
students with unnecessary details.

• It is able to compute routing tables and check whether
student submitted routing tables are correct.

3.1 OTE Components
The OTE consists of the following main parts:

• A simulation server that simulates a network and runs
routing protocols within that network. The simulation
server also accepts socket connections from clients pro-
grammed by students and forwards routing messages
to those clients.

• A Sharable Content Object Reference Model (SCORM)
compliant Learning Management System (LMS), e.g.
Moodle [1]. The student starts the assignment from
within the LMS and the assignment results are shown
to the students (and teachers) in the LMS. The Web
user interface of the OTE is packaged into a SCORM-
compliant Sharable Content Object (SCO), except for
the dynamic server-generated part, which resides in a
frame of the SCO.

• A server-side component that connects the LMS and
simulation server together. This component is invoked
from the LMS when the student starts the assignment.
It generates a topology for the student that will be
simulated in the simulation server. It also gets the
assignment result from the simulation server and gives
it to the LMS.

We built the simulation server by incorporating J-Sim as
the simulation engine and extending it with a component
that listens to protocol messages of a specific simulated net-
work node and forwards those messages to the student’s
client. We also implemented a socket server to interface with
the client. Effectively, the student’s client corresponds to a
simulation node, i.e. the client receives via the socket the
protocol messages that the simulation node receives. The
component that listens to the protocol messages only for-
wards the messages of interest, i.e. routing protocol mes-
sages.

To provide students with individual simulation scenar-
ios, the OTE uses the Brite topology generator to produce
random representative network topologies for each student.
Brite is described in a paper by Medina et al. [10].

To provide students with a visual representation of the
generated topology, the OTE uses the Graphviz open source
graph visualization software. Graphviz is described in a pa-
per by Gansner and North [6].

An LMS is used by the OTE for managing student assign-
ment statuses and results, submitting documents related to
the assignment, e.g. assignment plans, for reporting pur-
poses and for other value-adding functionality that a partic-
ular LMS may provide. According to an article by Paulsen

[12] that presents findings from analyses of the European
Web-edu project, many universities have purchased an LMS
and LMSs seem to work satisfactorily in various educational
institutions throughout Europe. Since a university giving a
networking course is likely to already have an LMS in use,
it is usually desired to use this existing system to manage
course information, such as students and their assignment
scores.

SCORM is a standard of the Advanced Distributed Learn-
ing (ADL) initiative of the United States government. Ac-
cording to Bohl et al. [3], SCORM has much potential,
but it is not without restrictions. Despite the restrictions,
we decided to comply with the SCORM standard because
it is widely implemented in available LMSs, which allows
portability and reusability, and because SCORM provides a
means to exchange important metadata between the content
and the LMS, such as assignment states and scores.

3.2 Using OTE
To do the programming assignment, the student takes the

following steps (see Figure 1):

• Step 1: The student logs in to the LMS to read assign-
ment instructions, to commence the assignment and
retrieve assignment results.

• Step 2: Externally, the student makes the client pro-
gram, then logs back into the LMS to start the assign-
ment.

• Step 3: The system generates a random topology for
the student.

• Step 4: The student uses the client program contact
the simulation server. The simulation server sends
routing messages to the client based on the topology
generated for the student.

• Step 5: The client builds its routing table based on
the routing messages and sends the routing table to
the server. The simulation server checks whether the
routing table is correct and stores the result in the
LMS. The student goes back to step 1, to see the re-
sult. If the routing table is not correct, the student
can optionally be allowed multiple resubmits.

The student’s client builds its routing table based on rout-
ing messages sent by the server. The format and content of
these messages depends on the simulated routing protocol.
In its initial version, the OTE simulates two routing proto-
cols which are abstractions of real routing protocols. The
abstractions are called DV (which stands for Distance Vec-
tor) and LS (which stands for Link State), and they are
loosely based on the real protocols RIP and OSPF, respec-
tively.

The DV protocol uses the User Datagram Protocol (UDP)
[13] so that the student gets experience with datagram sock-
ets. As the student’s client contacts the server, it sends an
authentication message that identifies the student. Then
the server starts sending the routing data. The routing data
messages have the format “[x, y, z]”, where x is the network
interface number, y is the name of a router, and z is the dis-
tance to router y. Each of these messages are sent in separate
UDP packets. In the DV protocol, the distance between two
adjacent routers is always assumed to be one. As the client

93

Figure 1: Programming assignment steps. See de-
scription in text.

receives the routing messages, it calculates its routing table
using a distributed Bellman-Ford algorithm (based on the
original non-distributed Bellman-Ford algorithm [2]).

The LS protocol uses the Transmission Control Proto-
col (TCP) [14] so that the student gets experience with
byte stream sockets. Like with the DV protocol, the stu-
dent’s client first sends an authentication message that iden-
tifies the student. Upon successful authentication, the client
sends a HELLO message to the server. The server responds
with a message for each neighbor of the student’s router in
the simulated network. The messages contain the names of
these neighbor routers. The communication then continues
according to the protocol, and finally the student’s client
will have enough information to build a link state database
and calculate its routing table using Dijkstra’s shortest path
algorithm [5].

The student’s client sends its routing table to the server
using a separate submission protocol which uses TCP. The
server then compares the submitted routing table with the
routing table of the student’s node in the simulation.

4. DISCUSSION
The OTE supports a “learning by doing” approach to

teaching telecommunications software and routing. It does
this by allowing students to write their own client programs,
and notifying the students of possible mistakes in their so-
lutions, so that the students can fix them and resubmit the
corrected solutions. Automatic correction gives fast feed-
back and allows students to learn from their own mistakes
because they can still remember what they have done. We
believe this will have a strong positive impact on learning
results.

Since the submission is done using the Internet, students
are freed from the constraints of time and place since course
assignments can be solved when and where students want
to do them.

VNS, discussed in the Related Work section, also supports
the “learning by doing” approach. VNS is, however, better
suited for teaching low-level networking because it forwards
the students raw Ethernet traffic. Thus, it is not very suit-
able for teaching dynamic routing protocols on an introduc-
tory networking course, because of the amount of program-
ming work needed to accomplish even a simple router that
handles static routing, given the low-level issues that need
to be addressed. VNS does also not provide assignment
submission or correction functionality, meaning that course
personnel must use their resources to correct the student
assignments.

The OTE, on the other hand, can well be used to teach
dynamic routing even on an introductory networking course,
because students get the simplified routing data in a simple
format over UDP or TCP, using e.g. Java sockets. Thus,
the higher level operation and logic of dynamic routing can
be communicated, without overwhelming students with too
much detail.

The OTE’s automatic correction of assignments gives fast
feedback to students and reduces the work load of the course
personnel.

In contrast with Ludwig, discussed in the Related Work
section, the OTE does not, at least in the initial version, per-
form any style checks to the code submitted by students. Be-
cause programming style is a very personal matter, and since
students can choose from more than one programming lan-

94

guage when implementing the client, automatic style checks
would be hard to implement. Ludwig also attempts to com-
pile the submitted program, which is needed for the opera-
tion of the system, but in the OTE such functionality would
be of little value to students, since students can compile
their programs with their own compilers. The other edu-
cational aspects of using Ludwig or the OTE are similar,
apart from the fact that the OTE teaches routing and net-
work programming, not just introductory programming.

5. CONCLUSIONS AND FUTURE WORK
We believe that our system will have a strong positive

impact on learning results. Routing is one of the most dif-
ficult concepts related to computer networks. Theoretical
studying alone is not sufficient for understanding the real
practical problems. Our system allows combining theory
and practicalities since theory presented in the course lec-
tures can be immediately applied in students’ own work in
a very concrete way. Additionally, the students gain prac-
tice in writing real network programs that need to authen-
ticate across the Internet and implement algorithms based
on data received from the network. Future enhancements to
the OTE include adding support for teaching other network
protocols in addition to the dynamic routing protocols. We
believe that our platform is generic enough to be extensi-
ble to all kind of networking assignments. The system has
been deployed and used first time during the Autumn 2006
course and based on the feedback, the students felt that
the new assignment structure and the teaching environment
was good and helped the learning process. However, further
studies are needed to understand how the students perceive
the system and how it actually helps learning.

6. ACKNOWLEDGMENTS
The authors thank Sara Vuori for providing the assign-

ment step figures and for other substantial assistance in the
project. Also, the authors thank Sanna Suoranta for her
comments and for letting the authors to mess up her course’s
programming assignment.

7. REFERENCES
[1] Anon. Moodle website. URI: http://moodle.org/.

[2] R. Bellman. On a routing problem. Quarterly of
Applied Mathematics, 16(1):87–90, 1958.

[3] O. Bohl, J. Schellhase, R. Sengler, and U. Winand.
The Sharable Content Object Reference Model
(SCORM)A Critical Review. In ICCE ’02:
Proceedings of the International Conference on
Computers in Education, page 950, Washington, DC,
USA, 2002. IEEE Computer Society.

[4] M. Casado and N. McKeown. The virtual network
system. In SIGCSE ’05: Proceedings of the 36th
SIGCSE technical symposium on Computer science
education, pages 76–80, New York, NY, USA, 2005.
ACM Press.

[5] E. W. Dijkstra. A note on two problems in connexion
with graphs. Numerische Mathematik, 1(1):269–271,
December 1959.

[6] E. R. Gansner and S. C. North. An open graph
visualization system and its applications to software
engineering. Software – Practice and Experience,
30(11):1203–1233, 2000.

[7] C. L. Hedrick. RFC 1058: Routing Information
Protocol, 1988.

[8] A. Korhonen, L. Malmi, and P. Silvasti. TRAKLA2: a
framework for automatically assessed visual algorithm
simulation exercises. In Proceedings of Kolin Kolistelut
/ Koli Calling – Third Annual Baltic Conference on
Computer Science Education, pages 48–56, 2003.

[9] J. Lindqvist and S. Liimatainen. VERKKOKE: online
teaching environment for telecommunications software
and routing. SIGCSE Bull., 38(3):319–319, 2006.

[10] A. Medina, A. Lakhina, I. Matta, and J. Byers.
BRITE: An Approach to Universal Topology
Generation. In MASCOTS ’01: Proceedings of the
Ninth International Symposium in Modeling, Analysis
and Simulation of Computer and Telecommunication
Systems (MASCOTS’01), page 346, Washington, DC,
USA, 2001. IEEE Computer Society.

[11] J. Moy. RFC 2328: OSPF Version 2, 1998.

[12] M. F. Paulsen. Experiences with Learning
Management Systems in 113 European Institutions.
Educational Technology & Society, 6(4):134–148, 2003.

[13] J. Postel. RFC 768: User Datagram Protocol, 1980.

[14] J. Postel. RFC 793: Transmission Control Protocol,
1981.

[15] S. C. Shaffer. Ludwig: an online programming
tutoring and assessment system. SIGCSE Bull.,
37(2):56–60, 2005.

[16] H.-Y. Tyan, A. Sobeih, and J. C. Hou. Towards
Composable and Extensible Network Simulation. In
19th IEEE International Parallel and Distributed
Processing Symposium (IPDPS’05), 2005.

95

