
Verkkoke 1.1 User Manual

Copyright (c) 2007, Telecommunications Software and Multimedia Laboratory (TML),
Helsinki University of Technology.

Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-
FRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
Verkkoke 1.0 includes third party components, i.e. J-Sim 1.3 and Brite 2.1 binaries. The
inclusion of these components requires inclusion of their respective copyright statements.

J-Sim 1.3

Copyright (c) 1998-2004, Distributed Real-time Computing Lab (DRCL)
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are per-
mitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of con-

ditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of

conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. Neither the name of “DRCL” nor the names of its contributors may be used to en-
dorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIB-
UTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, IN-
DIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER-
WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Brite 2.1

Copyright (c) 2002 QoS Networking Laboratory (QNL), Boston University. All rights re-
served. Permission to use, copy, modify, and distribute this software and its documentation
for any purpose and without fee is hereby granted, provided that the above copyright notice
appear in all copies and that both the copyright notice and this permission notice appear
in supporting documentation. The QoS Networking Laboratory (QNL) of the Computer
Science Department at Boston University makes no representations about the suitability of
this software for any purpose. It is provided “as is” without express or implied warranty.

i

Table of Contents

1 Introduction . 1

2 Getting Started . 2
2.1 Installing Verkkoke . 2

2.1.1 Prerequisites . 2
2.1.2 Installation Steps . 2
2.1.3 Detailed Installation . 2

2.1.3.1 Configuring Web Server . 3
2.1.3.2 Deploying Topology Generator . 3
2.1.3.3 Deploying SCORM Package . 3
2.1.3.4 Updating Configuration Files . 4
2.1.3.5 Starting Simulation Server . 4

2.2 Configuring Verkkoke . 4

3 Using Verkkoke as Student . 5
3.1 The DV Protocol . 7
3.2 The LS Protocol . 7
3.3 Routing Table Submission . 8

4 Using Verkkoke as Teacher . 9
4.1 Learning Management System . 9
4.2 Backing Up Verkkoke . 9

5 Compiling From Source (Optional) 10

Chapter 1: Introduction 1

1 Introduction

Verkkoke 1.1 is an online teaching environment for telecommunications software and rout-
ing, based on “learning by doing” philosophy. It is designed for use in conjuction with a
programming assignment. The assignment introduces students to socket programming and
simplified routing protocols. Students write client programs, which connect to the Verkkoke
1.1 server. The server simulates a network of routers. The student’s client represents one
router in the simulated network.

First, the student’s client authenticates with the server. Upon successfull authentication,
the server sends routing protocol messages to the student’s client. The client then builds
its routing table according to the received routing protocol messages. Finally, the client
submits its routing table to the server.

Key features of Verkkoke 1.1:
• Creates individual simulated networks with representative topologies for the students.
• Simulates two simplified routing protocols, one distance vector protocol and one link

state protocol. Sends protocol messages to the client.
• Automatically checks the submitted routing tables.
• Gives feedback to students, so that they can learn from their mistakes, fix them and

resubmit the corrected solutions.
• Compatibility with modern learning management systems through its adherence to the

Sharable Content Object Reference Model (SCORM) specification.
• Graphical Configuration Interface (GCI) to easily setup and maintain Verkkoke.
• Modularity and extensibility, which allows using the sophisticated network simulation

engine for teaching other network protocols in addition to the routing protocols.

Chapter 2: Getting Started 2

2 Getting Started

2.1 Installing Verkkoke

2.1.1 Prerequisites

The software depends on the following components:

• A SCORM-compliant Learning Management System (LMS), e.g. Moodle.

• A php 5.0 enabled web server, e.g. Apache.

• A Java servlet engine, e.g. Tomcat.

• A Java runtime environment, version 1.5 or later.

• The Graphviz graph visualization software. The “dot” command of Graphviz is used.
This is included in many Linux distributions.

To install these components, please refer to their own instructions.

2.1.2 Installation Steps

See [Detailed Installation], page 2, for more thorough instructions.

1. Extract the contents of the package: tar -zxf verkkoke-1.1.tar.gz.

2. Copy the ‘verkkoke’ root folder (and its contents) to the desired deployment location.

3. Configure your PHP enabled web server to publish files under web directory

4. Deploy the ‘topologygenerator.war’ file in the verkkoke folder to your servlet engine.
Refer to your servlet engine’s documentation on how to deploy a WAR (Web ARchive)
file. Make sure that the “$topologygeneratorURL” variable in config.php matches the
URL of the deployed servlet.

5. Deploy the SCORM package to your LMS. See the README.txt file in the “scorm”
folder.

6. Configure file system permissions. Web server must be able to read from and
under verkkoke directory. It must also be able to write to ‘data/student_data’
directory, and to files ‘server/bin/simulationserver.properties’ and
‘topology_generator.conf’. Topology Generator must be able to read
‘topology_generator.conf’ from verkkoke directory, write to ‘data/student_data’,
‘data/brite’ and ‘web/topologyPics’, and to execute dot. Simulation Server must
be able to read its own files (including ‘simulationserver.properties’ written by
web server) and to write its log files (if logging is required) to ‘log’ directory.

7. Launch Graphical Configuration Interface by pointing your web browser to
‘web/configGUI/index.php’. Save settings once, even if you do not need to change
anything, to update Simulation Server’s and Topology Generator configuration files.

2.1.3 Detailed Installation

First, make sure you have installed everything needed that is needed by Verkkoke: A PHP
5.0 capable web server (e.g. Apache), a servlet engine (e.g. Apache Tomcat), a SCORM

http://moodle.org/
http://www.apache.org/
http://tomcat.apache.org/
http://www.graphviz.org/

Chapter 2: Getting Started 3

supporting learning management system (e.g. Moodle), Java 5.0 or newer and Graphviz’
dot program1.

Extract the contents of the package: tar -zxf verkkoke-1.1.tar.gz. This should cre-
ate directory ‘verkkoke’ with some subdirectories (‘data’, ‘log’, ‘phpinc’, ‘scorm’, ‘server’
and ‘web’). There should also be ‘default_brite_conf’, ‘default_student_data.data’
and ‘topology_generator.conf’ files.

2.1.3.1 Configuring Web Server

Configure your web server to publish files in ‘web’ directory, including its subdirectories.
Note that scripts in ‘web’ directory need access to some files in ‘verkkoke’ directory or its
subdirectories, so ‘web’ directory should not be copied or moved anywhere, neither should
‘verkkoke’ directory be accessible via HTTP2.

Web server, or more precisely the PHP engine, must also be able to write files
to ‘data’ directory. If Graphical Configuration Interface is used, server must also
be able to write Simulation Server’s and Topology Generator’s configuration files
(‘server/bin/simulationserver.properties’ and ‘topology_generator.conf’
respectively).

Also note that the web server must be able to handle PHP 5.0.

2.1.3.2 Deploying Topology Generator

Deploy ‘server/topologygenerator.war’ to your servlet engine3. Make sure that Topol-
ogy Generator servlet can read its configuration file ‘topology_generator.conf’. Read and
write permissions are needed for topology and data files in ‘data’ and ‘web/topologyPics’
directories. It is probably easiest to grant read and write permissions for whole ‘verkkoke’
directory and subdirectories. This should not be a problem.

Execute permission is needed for dot. Topology Generator uses reflection, so
java.lang.reflect.ReflectPermission "suppressAccessChecks" must be set.

Finally, Topology Generator’s URL must be updated to ‘phpinc/config.php’, either
by manually editing the file or by Graphical Configuration Interface. GCI is located in
‘web/configGUI’ and should be accessible using web browser and working if web server is
correctly configured. Name of the parameter is $topologyGeneratorURL. Default value for
URL is to assume that servlet engine is run on a local machine (localhost) at port 81804.

2.1.3.3 Deploying SCORM Package

Before SCORM package can be deployed to LMS, it must be
updated. In ‘scorm/simassignment/launch.htm’ find parameter
onLoad="launchSim(’http://host/directory/simassignment.php’)". Edit the URL
according to your web server settings to match ‘simassignment.php’ in ‘verkkoke/web’
directory. Then package contents of the ‘scorm/simassignment’ directory to a zip file.
This zip file is now ready to be deployed to your LMS.

1 All of the mentioned programs are available via apt in Debian GNU/Linux, including Sun’s Java Virtual
Machine

2 In Apache, it is easy to use Alias and Directory commands to publish just about any directory in
arbitrary URL (within domain, of course)

3 In Apache Tomcat this is usually simply done by copying .war file to ‘webapps’ directory
4 This is Debian’s default setting

Chapter 2: Getting Started 4

2.1.3.4 Updating Configuration Files

Usually, configuration files should be updated using Graphical Configuration Interface. GCI
is located in ‘web/configGUI’ and should be accessible using web browser and working if
web server is correctly configured. To update configuration files, simply log in to GCI and
save configuration once. CGI has explanations of different parameters.

Main Verkkoke configuration file is ‘phpinc/config.php’. Simula-
tion Server and Topology Generator have their own configuration files
(‘server/bin/simulationserver.properties’ and ‘topology_generator.conf’
respectively), but they are just subsets of parameters in ‘config.php’. If files are edited
manually, they must be kept in sync to avoid problems.

2.1.3.5 Starting Simulation Server

Simulation Server is located in directory ‘server/bin’ along with ‘run.sh’ script to run
it. It should be ready to run after configuration files have been updated. Server is able to
follow changes made to configuration file and automatically adopts new settings.

2.2 Configuring Verkkoke

The post-installation configuration of Verkkoke 1.1 should be done using web based Graph-
ical Configuration Interface. GCI main script file is ‘web/configGUI/index.php’ which
should be accessible if your web server is configured correctly. GCI has descriptions of
different parameters and other help. Please remember that GCI must be run at least once
and configuration saved to synchronize different configuration files in the system.

If you know, or wish to know, what you are doing, you can edit configuration file
‘phpinc/config.php’ by hand. File is quite well documented, so it should be relatively
easy to change some settings through there, if needed.

There is also a file ‘phpinc/resources.php’ that contains resource links that are shown
to students if their score is less than 100 %. Edit it, if you wish to add or remove resources.

Chapter 3: Using Verkkoke as Student 5

3 Using Verkkoke as Student

As mentioned in Chapter 1 [Introduction], page 1, Verkkoke 1.1 is designed for use in
conjunction with a programming assignment.

To do the programming assignment, the student takes the following steps:

1. The student logs in to the Learning Management System (LMS) to read assignment
instructions, to commence the assignment and retrieve assignment results.

2. Externally, the student makes the client program, then logs back into the LMS to start
the assignment.

3. The system generates a random topology for the student.

4. The student has the client program contact the simulation server. The simulation
server sends routing messages to the client based on the topology generated for the
student.

5. The client builds its routing table based on the routing messages and sends that routing
table to the server. The simulation server checks whether the routing table is correct
and stores the result in the LMS. The student goes back to step 1, to see the result. If
the routing table is not correct, the student is allowed to submit again.

Chapter 3: Using Verkkoke as Student 6

Step 3 in the above process description can be reached in two different modes, practice
mode and submission mode. When in practice mode, the student can choose the size of the
generated topology. A picture of the topology is shown when it has been generated. The
student has the option to generate a new topology, if desired. When in submission mode,
the system will always generate a new topology of certain, teacher configurable number of
nodes, and the topology is not shown to the student.

The student’s client builds its routing table based on routing messages sent by the
server. The format and content of these messages depend on the simulated routing pro-
tocol. Verkkoke 1.1 simulates two routing protocols which are abstractions of real routing
protocols. The abstractions are called DV (which stands for Distance Vector) and LS (which
stands for Link State), and they are loosely based on the real protocols RIP and OSPF,
respectively.

Chapter 3: Using Verkkoke as Student 7

The student’s client sends its routing table to the server using a separate submission
protocol which uses TCP. The server then compares the submitted routing table with the
routing table of the student’s node in the simulation.

3.1 The DV Protocol

The DV protocol uses UDP so that the student gets experience with datagram sockets.
Because UDP does not guarantee reliable data transfer, and because in order to build its
routing table, the client must receive all DV messages, the DV protocol includes a basic
reliability mechanism, called stop-and-wait Automatic Repeat reQuest (ARQ). Stop-and-
wait ARQ provides reliability by requiring that each packet sent is acknowledged. The
sender sends a packet and waits for an acknowledgement (ACK) packet, before continuing.
Since packets, also ACK packets, can be lost or duplicated, sequence numbers are used to
determine which ACK acknowledges what. In fact, when a receiver acknowledges reception
of a packet, it attaches to the ACK the sequence number of the next packet it expects.

First, the student’s client sends the authentication message. The server responds with
the message AUTH_OK s, where s is a random integer sequence number from within the range
[1..230]. All messages sent by the server contain a sequence number, and the client must
respond to every message received with an acknowledgement of the form ACK s+1.

Upon reception of the acknowledgement of the AUTH_OK s message, the server starts
sending the routing data. The routing data messages have the format [x, y, z, s], where
x is the network interface number, y is the name of a router, z is the distance to router
y, and s is the sequence number. The sequence number is incremented by one for each
new message. The server resends, by default, with one second intervals, if a message is not
acknowledged. If no ACK is received in 15 seconds, the server gives up, and stops resending
the message. These timeouts can be configured in a configuration file, as discussed in Section
Section 2.2 [Configuring Verkkoke], page 4.

Each of these messages are sent in separate UDP packets. In the DV protocol, the
distance between two adjacent routers is assumed to be always one. As the client receives the
routing messages, it calculates its routing table using a distributed Bellman-Ford algorithm.

3.2 The LS Protocol

The LS protocol uses TCP so that the students get experience with byte stream sockets.
The new line character separates different messages. Since TCP provides a reliable byte
stream, no additional reliability mechanism is required.

Like with the DV protocol, the student’s client first sends an authentication message
that identifies the student. If authentication succeeds, the server responds with the message
AUTH_OK. Upon successful authentication, the client sends a HELLO message to the server.
In a real routing protocol, the HELLO message would be sent through all network interfaces,
and thus to all neighbors. Since the simulation server represents the entire virtual network,
the client sends the HELLO message only to the simulation server. The server responds with
a message for each neighbor of the student’s router in the simulated network. The response
message has the form HELLO, name, interface, where name is the name of the neighbor
that would have sent this response, and interface is the number of the interface through
which the message would have arrived, e.g. HELLO, 3, 2. When responses for all neighbors
have been sent, the simulation server sends the message NOMORENEIGHBORS, 0.

Chapter 3: Using Verkkoke as Student 8

Next, the client determines the distance to each of its neighbors by sending an ECHO
message. The server responds with a message for each neighbor of the form ECHOREPLY,
name, distance, where name is the name of the neighbor that would have sent this response,
and distance is the distance to that neighbor, e.g. ECHOREPLY, 3, 2.

Now the client has all relevant information about its neighbors. To be able to build its
routing table, the client needs information about the rest of the network. In the LS protocol,
routers communicate information about their links with INFORM messages. These have the
form INFORM, router_name, neighbor_name, distance, where router_name is the name
of the router which is sending its link information, and neighbor_name is the name of one
of its neighbors, e.g. INFORM, 3, 5, 2. distance is the distance between the two routers.
To get link information from the server, the client sends the message INFORM. The server
responds by sending INFORM, router_name, neighbor_name, distance messages to the
client. After all these messages has been sent, the server closes the TCP connection. At
this point, the student’s client will have enough information to build a link state database
and calculate its routing table using Dijkstra’s shortest path algorithm.

If the server receives an invalid protocol message from a client, it responds by sending
the message ERROR.

3.3 Routing Table Submission

The student’s client sends its routing table to the server using a separate submission protocol
which uses TCP. The server then compares the submitted routing table with the routing
table of the student’s node in the simulation.

The submission protocol advances as follows:
First, the client sends the authentication message. The server responds with the message

AUTH_OK. Then, the client sends its routing table in this format: x,y,z;x,y,z;...;x,y,z;,
where x is the name of a destination (router), y is the distance to that destination, and z is
the number of the interface, through which the destination is reached. Each routing table
row ends with a semicolon (;). The server responds with a message of the form SUBMISSION
OK, feedback, or SUBMISSION FAILED, reason, if the routing table message was invalid or
there was some internal error. Finally, the server closes the TCP connection.

The requirements for the submitted routing table are different for the DV protocol
and the LS protocol. The difference is that for the LS protocol, if there are multiple
shortest paths (of equal cost) with different next hops (and thus different interface ids) for
a destination, the routing table must contain an entry for each of these options. This is
called Equal Cost Multipath (ECMP) routing. ECMP is required so that the student can
demonstrate that the algorithm used in the client finds all the shortest paths. In real-world
routing, ECMP can be used for load balancing. ECMP is supported by OSPF. ECMP is not
required with the DV protocol, however. The ECMP requirement in the LS protocol also
serves to balance the difficulty of implementing the two protocols, since the DV protocol
involves implementing stop-and-wait ARQ, whereas the LS protocol just uses TCP.

The submission server compares the submitted routing table with the routing table of
the student’s node in the simulation. The simulation table contains all ECMP entries. The
feedback to the student consists of a score (passed/failed) and the number of incorrect or
missing routing table destinations. The submission server sends this information to the
student’s client. The result can later be accessed through the LMS, on the result page.

Chapter 4: Using Verkkoke as Teacher 9

4 Using Verkkoke as Teacher

4.1 Learning Management System

A Learning Management System (LMS) is used with Verkkoke 1.1 for managing student as-
signment statuses and results, submitting documents related to the assignment, e.g. assign-
ment plans, for reporting purposes and for other value-adding functionality that a particular
LMS may provide.

Since a university giving a networking course is likely to already have an LMS in use, it
is usually desired to use this existing system to manage course information, such as students
and their assignment scores.

Typically, a teacher performs the following tasks with Verkkoke 1.1:
• Add students to LMS.
• Accept assignment related documents submitted by students, e.g. plans or final reports.
• Look at the assignment report with the grades for the different assignment parts for

each student.

Since the programming assignment grades are automatically stored in the LMS, the
teacher does not need to learn how to use any new system. All of the teacher’s tasks are
done through the LMS, which the teacher is probably already familiar with.

4.2 Backing Up Verkkoke

Normally all result data is stored to the Learning Management System and there should be
no reason to store any other data (topologies etc.). If for some reason all data has to be
backed up, it is enough to copy directory ‘data/student_data’. If one wishes to backup
configuration, file ‘phpinc/config.php’ should be copied.

Chapter 5: Compiling From Source (Optional) 10

5 Compiling From Source (Optional)

Verkkoke can be compiled using Apache Ant, the build file is “build.xml”. For details, refer
to http://ant.apache.org/.

Change to the ‘server’ directory and issue any of the following commands:

ant Compiles Verkkoke.

ant build_the_war
Builds the topology generator WAR (Web ARchive) file.

ant javadoc
Creates the Javadoc documentation. Javadocs are not complete and therefore
not very useful

ant clean Removes the compiled classes.

http://ant.apache.org/

	Introduction
	Getting Started
	Installing Verkkoke
	Prerequisites
	Installation Steps
	Detailed Installation
	Configuring Web Server
	Deploying Topology Generator
	Deploying SCORM Package
	Updating Configuration Files
	Starting Simulation Server

	Configuring Verkkoke

	Using Verkkoke as Student
	The DV Protocol
	The LS Protocol
	Routing Table Submission

	Using Verkkoke as Teacher
	Learning Management System
	Backing Up Verkkoke

	Compiling From Source (Optional)

