Reliable and Application layer Multicast

T-110.456
Content Networking in the Mobile Internet
Agenda

• Introduction to multicast
• Reliable multicast
• Application layer multicast
• Conclusions
Introduction to Multicast

• Why multicast?
 • to reduce network load
 • multiple recipients
 • multiple sources
 • multiple media
 • variable membership

• Problems
 • The Amount of control traffic explodes
 • extreme routing & protocol complexity
Introduction to Multicast

• Basics of IP multicast
 • Network layer
 • Addressing
 – an address to group of receivers instead of a single receiver
 – mapping that addr. onto data-link layer mcast address if they exist
 – IPv4: D class address 224.0.0.0 – 239.255.255.255
 • Groups
 – Computers wanting the multicast have to register to a multicast group (Join)
 – unlimited group size
 – host can be a member of several groups at the same time
 – sender does not need to belong to any group
 • Routing
 – An effective distribution of packets to receivers through networks
 – Steiner tree would be optimal for multicast, but not maintainable
 – Always a compromise
Introduction to Multicast

- Basics of IP multicast
 - Techniques & algorithms
 - Flooding – simple, but does not scale
 - Spanning tree – easy, but not efficient
 - Reverse-Path Forwarding (RPF) – group not considered
 - Truncated RPF – group considered, used in MBONE, doesn’t scale
 - Steiner tree – optimal algorithm, but not practical
 - Protocols
 - IGMP – Internet Group Management Protocol v.2
 - DVMRP (Distance Vector Multicast Routing Protocol)
 - MOSPF
 - PIM (Protocol Independent Multicast)
 - Sparse Mode for highly distributed groups
 - Dense Mode for highly concentrated groups
 - PIM-SM is most widely used multicast routing protocol
Reliable Multicast

- Reliable vs. Best Effort
 - e.g. software distribution vs. streaming
 - analogy to TCP(reliable protocol) over IP(unreliable)
 - Reliable multicast protocol on top of IP multicast

- Guarantees that all group members receive data in order without loss, duplication or corruption.

- Problems:
 - Feedback implosion problem
 - feedback from the receivers fill the network
 - Crying baby problem
 - only couple of packet lossy receivers slow down the entire multicast session
Reliable Multicast

- Reliable Multicast Techniques (1)
 - ACK-based loss reporting
 - NAK-based loss reporting
 - Distributed loss recovery
 - Router-assisted loss recovery
 - FEC (Forward error correction)-based
Reliable Multicast

- Reliable Multicast Techniques (2)
- ACK-based loss reporting
 - SCE - Single-Connection Emulation protocol
 - The simplest reliable multicast protocol
 - Data sent multicast, but receivers ACK IP unicast
 - Works great in small groups, but does not scale
 - ACK implosion - receivers send ACK at the same time. ACK aggregators or designated routers act as retransmission points.
 - ACK-based loss reporting
Reliable Multicast

- Reliable Multicast Techniques (3)
 - NAK-based loss reporting
 - receivers responsible for detecting losses (sequence numbers) and request retransmissions for themselves – receiver driven protocol
 - receivers send Negative ACKs if losses
 - better reliability and better throughput than in ACK-based
 - NAK implosion causes problems
Reliable Multicast

- Reliable Multicast Techniques (4)
 - Distributed loss recovery
 - based on NAK
 - packets retransmitted by nearby group members
 - speeds up recovery and prevents network overloading
 - tree based topologies define Designated Receivers, which do the retransmitting
 - subgroup hierarchies called fusion trees. Recovering from losses by
 - Multicast with duplicate avoidance – NAKS and repairs multicast
 - cascaded unicast – NAKs and repairs unicast
 - hybrid – NAKs unicast to DR, repairs multicast to subgroup
 - more protocol overhead since the receivers need to be aware of the nearby network topology
 - who retransmits to who
 - locality information
Reliable Multicast

- Reliable Multicast Techniques (5)
 - Router-Assisted Recovery
 - seems to be the trend in general purpose multicast
 - reliable multicast support added to routers
 - buffering
 - soft state retransmission
 - rich multicast forwarding semantics
 - may have effect in the performance of the routers
 - FEC (forward error correction)-based recovery
 - error correction data (CRC:s) etc. encoded in the packets
 - reliable, but slow
 - large overhead
 - usually special-purpose applications e.g. software distribution
Application Layer Multicast

- All routers cannot be changed to support IP & Reliable Multicast overnight
- Instead an Overlay Network of Intelligent nodes capable of receiving data and sending it to multiple downstream peers.
 - TCP
 - Nodes are usually general purpose computers
- Application layer multicast builds the multicast transport on top of the conventional unicast transport
Application Layer Multicast

- Overlay setup
 - physical overlay setup
 - overlay nodes scattered in the networks
- Tree organization
- Content distribution
- End-user subscription
Application Layer Multicast

- Building the distribution tree
 - Goal: scalable loop-free overlay topology
 - Peer discovery
 - point of contact
 - multicast expanding-ring search
 - manual mesh (preconfigured)
 - Neighbor selection
 - reduced amount of peers
 - Parent selection
 - Optimizing bandwidth, delay, jitter, reliability etc.
 - Tree maintenance
 - recover from network and node failures
 - adapt to the changing network
 - improving the network performance
Conclusions

<table>
<thead>
<tr>
<th>Reliable Multicast (based on IP Multicast)</th>
<th>Application Layer Multicast (based on Overlay Network)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• General purpose</td>
<td>• Easy deployment</td>
</tr>
<tr>
<td>• Far more effective when broadcasting!</td>
<td>• Effective transport (application specific)</td>
</tr>
<tr>
<td>• Utilizes link bandwidth more efficiently</td>
<td>• Asynchronous Delivery (relies on unicast protocols)</td>
</tr>
<tr>
<td>• Well suited for LARGE scale</td>
<td>• Application layer routing (more data available to make transmitting decisions)</td>
</tr>
<tr>
<td>• Needs support from routers</td>
<td>• Versatility</td>
</tr>
<tr>
<td></td>
<td>• Future: Overlay Multicast in Mobile Ad Hoc network etc.</td>
</tr>
</tbody>
</table>
Thank You!