Wireless Access Protocol (WAP)

NiePin & Zhou Hu
HUT
TML Laboratory
T-110.456
Agenda

■ WAP Introduction
 ■ Environment and Limits
 ■ Protocol Stack Overview

■ Specification
 ■ WAE
 ■ WTLS
 ■ WTP

■ Applied Fields and Future of WAP
■ Conclusion
WAP Introduction

- Goal: To bridge the gap between the mobile network and Internet
- WAP is a global standard produced by WAP forum founded in 1997 with the help of Nokia, Ericsson, Motorola and Unwired Planet.
- There are two different editions: WAP 1.x and WAP 2.x
- Generally, WAP related technologies are referenced with counterparts in Internet model with some changes suitable for mobile network
Environment and Limits

- Environment
 - Narrowband (EDGE 80-160kbps, HSCSD: Nokia6610i-43.5kbps)
 - High latency
 - Typical burst errors

- Limits
 - Week CPU (Intel PXA255 400MHz, bus 200MHz)
 - Little memory (Nokia7710-90MB internal memory 128MB MMC card; Nokia6822---3.5MB internal memory)
 - Limited on electrical power (Nokia6822---Talk Time: 3-8 hours)
 - Limited user I/O (no keyboard, mouse; few interfaces)
WAP 1.x Communication Model
WAP Gateway

- A main difference between WAP and WWW model. It is a logical component.
- **Main Tasks**
 - Conversion between WML/WAP protocol type and HTML/HTTP/IP type, i.e. Encoding and Decoding
 - WMLScript Compiling
 - Data Compression for OTA transmission
 - Support different trust models
 - End-user authentication system
- **Problems**
 - Data is decrypted and again encrypted here
 - No end-to-end security ➔ man-in-the-middle-attack
Protocol Structure (WAP 2.0)
WAP 2.x Communication Model

- WAP proxy support for TLS tunneling

TCP*: Wireless Profiled TCP (WP-TCP)
WAP 2.x Communication Model

- Direct Access
WAP Proxy

- An *optional* enhancement “WAP gateway”

- Main tasks
 - Protocol gateway translation (backward compatible to WAP 1.0)
 - Content encoding and decoding (Compact and Binary format)
 - WP-TCP and User agent profile management
 - Feature enhancement (e.g. location, privacy)

- Relation with WAP Gateway
Specification WAE

- A general runtime environment for providing service, instead of a protocol
- Aim: To enable operators, manufacturers, and content developers to develop advanced differentiating services and applications (e.g. microbrowser, email)
- Two basic components---In logical, can be integrated together depending on specific architectures and environment.
 - Microbrowser---facilitates browsing of WAP content
 - WTA (Wireless Telephony Application)---an interface to telephony application (call control, phonebook)
- Examples
 - SIM toolkit---build applications into smart card
 - WinCE
 - JavaPhone
Microbrowser

- A variation of standard browser that makes minimal demands on hardware, memory and CPU
- It can display information written in WML and interpret WMLScript files
- Crippleware, by desktop standards
 - Not support cookies
 - Not support HTML above version 3.2
 - Not support frames
WML

- Based on XML, stricter than HTML (e.g. case sensitive)
- The flow of building WML file: Edit->validate->compile+test->publish
- A WML document have multiple pages called **card** and this page is named **deck**
 - Reason: Can retrieve the decks at the same time, i.e. Each request (a dial-up session) for a deck
 - A deck is embraced by `<xml>...</xml>`
 - A card is embraced by `<card>...</card>`
WMLScript

- Based on ECMAScript, similar to JavaScript
- Need to be compiled into byte code on server-side before running in Microbrowser
- Not embedded in the WML decks, but only the references to script URLs
- It can access the UML state model as well as the WML variables
Benefits of WAE

- open standard, vendor independent
- network-standard independent
- transport mechanism—optimized for wireless data bearers
- application downloaded from the server, enabling fast service creation and introduction, as opposed to embedded software (e.g. Java Applet)
WTLS

- An optional security layer with encryption facilities to provide the secure transport service
 - Symmetric cryptography---Privacy
 - Certificate---Authentication
 - MAC---Integrity
- Based on TLS 1.0, modifications are
 - Adding datagram support
 - Optimizing data size
 - Select fast algorithms
WTLS

WTLS Internal Architecture

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Record Protocol</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Handshake protocol**: To agree on the protocol options to be used
- **Alert protocol**: Contains the severity (3 types) of the message and an alert description
- **Application protocol**: Contains the data that is exchanged between the two parties
- **Change Cipher Protocol**: To signal transitions in ciphering strategies
WTLS

- Problems
 - Week encryption, anonymous authentication allowed

- Possible attacks
 - A chosen plaintext recovery attack
 - A datagram truncation attack
 - A message forgery attack
 - Key-search shortcut for some exportable key

- Main reasons
 - Key size too small (e.g. RSA key 35 bits)
 - Unreliable datagram could be lost, duplicated or reordered
Other WAP Security Components

- WIM---WAP Identification Module, can be implemented in SIM card
- WMLScript
- Crypto API (Non-repudiation)
- WML
- Access Control
- WPKI---
- WAP Public Key Infrastructure
References

- **Books**
 - WAP Tutorial: Ericsson Website
 - WPKI: www.wapforum.org
 - WAP Architecture: www.wapforum.org
 - WAP Security: HUT S-38.153
 - Attacks against WTLS, Mr.Markku-Juhani Saarinen
 - Content Networking In The Mobile Internet, Mr.Sudhir Dixit and Mr.Tao Wu

- **Links**
 - http://www.w3schools.com/wap/wap_basic.asp
 - http://www.iec.org/online/tutorials/wap/topic05.html
 - http://www.visualtron.com/wap_topic05.htm
Game Over