
On Quality Metrics of Bounding Volume Hierarchies

Timo Aila Tero Karras

NVIDIA

Samuli Laine

Abstract

The surface area heuristic (SAH) is widely used as a predictor for
ray tracing performance, and as a heuristic to guide the construction
of spatial acceleration structures. We investigate how well SAH ac-
tually predicts ray tracing performance of a bounding volume hier-
archy (BVH), observe that this relationship is far from perfect, and
then propose two new metrics that together with SAH almost com-
pletely explain the measured performance. Our observations shed
light on the increasingly common situation that a supposedly good
tree construction algorithm produces trees that are slower to trace
than expected. We also note that the trees constructed using greedy
top-down algorithms are consistently faster to trace than SAH indi-
cates and are also more SIMD-friendly than competing approaches.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing; I.3.6 [Computer Graphics]:
Methodology and Techniques—Graphics data structures and data
types

Keywords: ray tracing, acceleration structures, quality metrics

1 Introduction

The construction of optimal acceleration structures for ray tracing
is believed to be an NP-hard problem [Havran 2000; Ng and Tri-
fonov 2003; Popov et al. 2009], and we need to rely on greedy
algorithms and heuristic quality descriptors to be able to build the
trees in a reasonable amount of time. By far the most commonly
used descriptor is the surface area heuristic, SAH [Goldsmith and
Salmon 1987; MacDonald and Booth 1990] which corresponds to
the expected cost of tracing a non-terminating (long) random ray:

SAH :=
1

Aroot

(
Cinn

∑
n∈I

An + Ctri

∑
n∈L

TnAn

)
=
∑
n∈N

Cn
An
Aroot

,

(1)
where I , L and N are the sets of inner, leaf, and all nodes, respec-
tively. Cinn is the cost of an inner node (two ray-node tests), Ctri the
cost of a ray-triangle test, and Cn the cost of processing node n (ei-
therCinn orCtriTn). We useCinn = 1.2 andCtri = 1.0, based on the
number of instructions needed by each operation on our test plat-
form. An denotes the surface area of node n, and Tn the number
of triangles in it. An/Aroot is the probability that a long random ray
intersects a convex node, provided that it intersects the root node.

It is known that the surface area heuristic correlates surprisingly
well with the measured ray tracing performance when one tweaks
the parameters of a particular tree builder [Havran 2000], but an in-
creasing amount of evidence suggests that the relation is not nearly

as perfect when trees built using different algorithms are compared,
e.g. [Ng and Trifonov 2003; Popov et al. 2009; Bittner et al.
2013]. We analyze this relationship comprehensively by imple-
menting nine different tree builders and quantifying how well SAH
correlates with the ray tracing performance in 22 test scenes.

We observe, for example, that there are cases where a bottom-up
builder [Walter et al. 2008] leads to lower SAH cost than sweep-
based top-down builders [MacDonald and Booth 1990; Stich et al.
2009], but the tracing of incoherent rays is nevertheless 30–60%
slower. Furthermore, it turns out that there is a bias favoring top-
down builders over other algorithms, and that top-down builders
are measurably more SIMD-friendly. Additionally, we note that
SAH consistently and significantly underestimates the cost caused
by scene rotation.

Discrepancies like this make it difficult to develop new tree con-
struction algorithms that deviate from the standard greedy top-down
approach. Motivated by the failure of SAH to sufficiently describe
the quality of trees that were constructed differently, we look for
additional descriptors that could provide the missing pieces of the
explanation. We identify two new descriptors that, together with
SAH, explain the measured performance very well in a wide range
of scenes on both scalar and SIMD architectures. Although the new
descriptors cannot be directly applied to constructing better trees,
they do allow us to better understand what makes certain trees good
for ray tracing, and to explain the supremacy of top-down builders.

2 Expected cost of a ray

SAH gives the expected cost of tracing a long random ray through
the scene. It predicts the ray tracing performance very well as long
as the rays are randomly oriented and never start or terminate inside
the scene. Path tracing and diffuse inter-reflection are sufficiently
close to random rays so that the first assumption holds, but almost
all rays start from surfaces and end on surfaces, and therefore the
second assumption is on a questionable footing.

For SAH to be proportional to the measured performance with fi-
nite random rays as well, one would have to assume that shorter rays
simply exhibit a certain percentage of the cost of a long ray. While
this is perhaps not unthinkable, in reality the situation is more com-
plicated. The rest of this section will describe two new descriptors
that try to quantify the costs that become relevant for finite rays.
These will then be used in the next section in addition to SAH to
describe the quality of trees.

2.1 End-point overlap (EPO)

If the ray’s end point (origin or hit point) is inside multiple branches
in the tree, we have to visit them all. For example, the first identified
intersection is often the closest one, but the amount of work needed
to verify this depends on how much the branches overlap around
surfaces. This overlap-related cost is a quantifiable weakness of the
particular tree because every end point could exist within exactly
one branch (assuming triangle splitting is allowed). Since we want
to use our new metric in addition to SAH, ideally we would want it
to be zero when there is no branch overlap anywhere in the tree —
e.g., for an octree where triangles have been clipped to leaf nodes.



If we assume that the ray origins and hit points are uniformly dis-
tributed on the surfaces, the probability of having such a point in-
side a node is proportional to the surface area of the triangles inside
that node’s volume (i.e., not just the triangles in that particular sub-
tree but all clipped triangles that are inside the volume). Then the
expected cost of searching a ray’s origin or end point from the tree
is ∑

n∈N

Cn
A(S ∩ n)
A(S)

, (2)

where S is the set of all surfaces in the scene. A(S ∩ n) is the
total area of surfaces inside the bounding volume of node n, which
after normalization by A(S) corresponds to the probability that the
query point resides inside n.

Now, a large part of this cost is useful payload and already included
in the traditional SAH cost. We therefore define a new metric, EPO,
that measures the amount of extra work caused by the overlap by

EPO :=
∑
n∈N

Cn
A
(
(S \Q(n)) ∩ n

)
A(S)

, (3)

where Q(n) is the set of surfaces that belong to the subtree of n,
and (S \ Q(n)) ∩ n is the geometry that does not belong to the
subtree of n but nevertheless lies within the volume of n. This cost
is zero when branches of the tree do not overlap, and lower values
are generally better. The geometric interpretation of this metric is
that it penalizes node overlap in areas where the ray origins and hit
points are likely to be.

While searching for a good overlap metric, we tried many variations
of the general idea (e.g. [Stich et al. 2009], [Popov et al. 2009],
or using node areas to approximate triangle areas), but EPO was
significantly more descriptive than the alternatives.

2.2 Leaf count variability (LCV)

SIMD execution deviates from scalar in that a ray can affect the ex-
ecution of another, in various ways. Assuming the primary bottle-
neck is execution [Aila et al. 2012], this has to relate to the variance
in the number of inner nodes, leaf nodes, or triangles processed by
a ray. We tested this hypothesis by measuring the variances, and
noticed that inner nodes and triangles do not seem to play a sig-
nificant role, but leaf nodes do. This relates to how the GPU trace
kernels are structured; there is a warp-wide mode switch between
inner and leaf nodes, and the variance in the number of leaf nodes
lowers the SIMD utilization of not only the triangle test but also
the inner node processing. We therefore define a new metric that
computes the standard deviation of the number of leaf nodes Nl
intersected by a ray:

LCV :=
√
E[N2

l ]− E[Nl]2. (4)

At present we calculate the expected values by counting the number
of leaf nodes encountered by each ray, for the set of rays used in
performance measurements. Therefore this metric should be seen
as an explanation for the effects incurred by SIMD execution rather
than something that can be optimized during construction.

3 Test setup

We perform our measurements on NVIDIA GTX680 using Aila et
al.’s publicly available ray tracing kernels [Aila and Laine 2009]
and diffuse inter-reflection rays that are incoherent, and thus cor-
respond at least partially to the assumptions of SAH. In partic-
ular, we do not use primary or shadow rays because they are

too view-dependent. We use 22 test scenes and 9 tree build-
ing algorithms: fast spatial mean-based LBVH [Lauterbach et al.
2009; Karras 2012], two greedy sweep-based top-down algorithms
(BBVH) [MacDonald and Booth 1990] and SBVH [Stich et al.
2009], one bottom-up algorithm (Agglo) [Walter et al. 2008], post-
process improvement using iterative reinsertion (Bittner) [Bittner
et al. 2013], two methods based on local tree rotations: hill climbing
and simulated annealing [Kensler 2008], and treelet restructuring
[Karras and Aila 2013] with and without triangle splitting (STreelet
and Treelet, respectively). The last five are initialized using LBVH,
and all algorithms use our own implementations relying on the de-
fault parameters recommended by the authors. We set SBVH’s free
parameter to 10−5 in all scenes, except that 10−4 was needed in
HAIRBALL and VEGETATION to avoid running out of memory and
10−6 in SANMIGUEL to see any splitting at all. STreelet uses 30%
split quota for all scenes, except SANMIGUEL where only 10%
were allowed due to memory constraints. With the exception of
LBVH, all methods aim for high quality trees. LBVH also dif-
fers from the other methods in that its leaf nodes contain always a
single triangle, while the others use (more efficient) variable-sized
leaf nodes. STreelet and SBVH split the input triangles adaptively,
and can therefore produce better trees than is possible for the other
methods. We include LBVH, SBVH, and STreelet because it is
important that the cost metrics also apply to these scenarios.

Tables 1 and 3 show detailed data for the 22 test scenes. All aggre-
gate results (average, minimum, maximum) refer to the full set of
measurements.

We use an unusually large number of test scenes because scene-
to-scene variation in behavior can be significant, and we wish to
ensure that the conclusions apply as broadly as possible. We fo-
cus on commonly used ray tracing test scenes, but augment the
list with several city models. CONFERENCE, SIBENIK, CRYTEK-
SPONZA, BAR, and SODA are widely used architectural models.
ARMADILLO, BUDDHA, DRAGON, BLADE, and MOTOR are finely
tessellated objects. MUSTANG and VEYRON are cars. FAIRY and
BUBS have widely varying triangle sizes. HAIRBALL, VEGETA-
TION, and POWERPLANT have difficult structure. The four cities,
CITY, BABYLONIAN, ARABIC, and ITALIAN show large spatial
extents; the last three are from Mitsuba distribution [Jakob 2010].
SANMIGUEL combines architecture with fine geometric detail and
vegetation; of our scenes it is probably the most realistic.

The measurements are averages over a scene-dependent number of
viewpoints. For individual objects we use two or three viewpoints,
for simple architecture four or five, and for bigger scenes up to ten.
The viewpoints try to capture all interesting aspects of the scene.

We measure the prediction power of a metric by computing the
sample Pearson correlation coefficient between the measured per-
formance x and the metric y:

Correlation :=

∑
i(xi − µx)(yi − µy)

σxσy
, (5)

where σx =
√∑

i(xi − µx)2. Although very widely used, Pear-
son’s correlation coefficient has some weaknesses. In particular, it
tends to give seemingly high values even when a particular metric
is a poor descriptor; as will be shown below, even 0.90 is not nec-
essarily an indication of success, and we really should aim for 0.99
or higher.

4 Explaining measured performance

Although our goal is to explain the ray casting performance on
GPUs, we start by analyzing scalar execution because it is impos-
sible to explain SIMD results properly without first understanding



Scene Metric Builder Correlation with ns/ray
LBVH BBVH SBVH Agglo Bittner H.Climb Anneal. Treelet STreelet SAH SAH+EPO SAH+EPO+LCV

CONFERENCECONFERENCECONFERENCECONFERENCECONFERENCECONFERENCECONFERENCECONFERENCECONFERENCECONFERENCECONFERENCE
(282755 tris)(282755 tris)(282755 tris)(282755 tris)(282755 tris)(282755 tris)(282755 tris)(282755 tris)(282755 tris)(282755 tris)(282755 tris)

Scalar (ns/ray) 111.36 69.01 56.85 58.41 55.90 68.07 55.16 59.31 55.01 0.992 0.999α=0.42 0.999α=0.41,β=0.03

SIMD (ns/ray) 12.02 5.97 4.16 5.81 5.53 6.15 5.17 5.56 4.42 0.951 0.983α=0.72 0.998α=0.24,β=0.71

SAH 71.89 46.50 38.94 38.17 36.51 42.69 36.24 38.48 39.32
EPO 21.68 9.79 4.10 8.27 6.76 11.51 7.07 8.21 2.19
LCV 11.66 2.63 1.35 3.25 3.30 2.66 2.40 2.50 1.38

FAIRYFAIRYFAIRYFAIRYFAIRYFAIRYFAIRYFAIRYFAIRYFAIRYFAIRY
(174117 tris)(174117 tris)(174117 tris)(174117 tris)(174117 tris)(174117 tris)(174117 tris)(174117 tris)(174117 tris)(174117 tris)(174117 tris)

Scalar (ns/ray) 90.74 65.66 65.40 78.25 65.27 68.07 71.07 67.61 68.73 0.672 0.988α=0.80 0.996α=0.63,β=0.21

SIMD (ns/ray) 8.52 4.77 4.65 5.69 4.98 5.05 5.04 5.08 5.09 0.660 0.915α=0.77 0.994α=0.23,β=0.69

SAH 43.54 33.58 34.70 37.31 32.16 33.38 34.32 33.02 43.72
EPO 7.72 3.45 2.78 6.59 3.20 3.38 4.75 3.47 1.58
LCV 7.15 1.79 1.67 1.86 1.98 1.79 1.79 1.81 1.51

BUBSBUBSBUBSBUBSBUBSBUBSBUBSBUBSBUBSBUBSBUBS
(1888101 tris)(1888101 tris)(1888101 tris)(1888101 tris)(1888101 tris)(1888101 tris)(1888101 tris)(1888101 tris)(1888101 tris)(1888101 tris)(1888101 tris)

Scalar (ns/ray) 86.36 68.63 53.62 55.10 51.28 58.14 52.52 55.16 57.11 0.947 0.988α=0.56 0.997α=0.11,β=0.73

SIMD (ns/ray) 7.26 5.06 4.32 4.75 4.55 4.91 4.64 4.76 4.73 0.830 0.907α=0.75 0.989α=0.00,β=0.96

SAH 28.72 24.51 17.81 16.28 15.29 17.73 15.51 16.43 21.11
EPO 12.26 8.39 2.68 4.24 2.90 3.93 3.56 3.65 1.27
LCV 2.82 1.28 1.18 1.27 1.29 1.34 1.21 1.30 1.05

SODASODASODASODASODASODASODASODASODASODASODA
(2168983 tris)(2168983 tris)(2168983 tris)(2168983 tris)(2168983 tris)(2168983 tris)(2168983 tris)(2168983 tris)(2168983 tris)(2168983 tris)(2168983 tris)

Scalar (ns/ray) 130.38 78.43 63.41 120.19 68.35 92.25 77.10 80.26 63.98 0.860 0.988α=0.88 0.988α=0.88,β=0.00

SIMD (ns/ray) 9.49 4.75 3.80 8.09 4.37 5.95 4.88 5.27 3.94 0.878 0.986α=0.83 0.988α=0.53,β=0.41

SAH 115.17 78.26 67.56 82.90 59.39 76.08 63.49 71.04 69.53
EPO 32.68 13.75 3.45 28.88 8.33 16.95 13.37 15.28 2.95
LCV 8.75 1.78 1.42 2.57 2.21 2.13 1.90 2.03 1.37

BABYLONIANBABYLONIANBABYLONIANBABYLONIANBABYLONIANBABYLONIANBABYLONIANBABYLONIANBABYLONIANBABYLONIANBABYLONIAN
(499036 tris)(499036 tris)(499036 tris)(499036 tris)(499036 tris)(499036 tris)(499036 tris)(499036 tris)(499036 tris)(499036 tris)(499036 tris)

Scalar (ns/ray) 162.34 69.74 48.95 71.99 61.54 84.53 64.35 77.82 53.76 0.989 0.994α=0.49 0.996α=0.07,β=0.84

SIMD (ns/ray) 12.50 4.56 3.07 4.92 4.26 5.78 4.32 5.38 3.64 0.987 0.990α=0.42 0.995α=0.01,β=0.93

SAH 93.85 54.97 41.31 50.16 44.89 55.62 45.14 51.25 43.97
EPO 52.33 18.97 3.09 17.96 13.15 22.59 14.31 19.04 6.55
LCV 5.45 1.75 0.97 2.01 1.88 2.00 1.76 1.95 1.05

DRAGONDRAGONDRAGONDRAGONDRAGONDRAGONDRAGONDRAGONDRAGONDRAGONDRAGON
(869928 tris)(869928 tris)(869928 tris)(869928 tris)(869928 tris)(869928 tris)(869928 tris)(869928 tris)(869928 tris)(869928 tris)(869928 tris)

Scalar (ns/ray) 95.97 78.74 77.10 96.62 82.37 84.82 93.98 83.54 81.90 0.896 0.996α=0.61 0.996α=0.30,β=0.56

SIMD (ns/ray) 8.94 6.83 6.65 8.49 7.28 7.46 8.15 7.52 7.35 0.959 0.988α=0.39 0.990α=0.14,β=0.73

SAH 71.97 56.74 55.75 65.43 57.26 62.04 63.28 60.41 59.22
EPO 6.04 3.29 2.50 11.35 5.02 5.00 9.66 5.00 3.47
LCV 2.65 1.79 1.76 1.95 1.88 1.87 1.84 1.85 1.78

MOTORMOTORMOTORMOTORMOTORMOTORMOTORMOTORMOTORMOTORMOTOR
(322284 tris)(322284 tris)(322284 tris)(322284 tris)(322284 tris)(322284 tris)(322284 tris)(322284 tris)(322284 tris)(322284 tris)(322284 tris)

Scalar (ns/ray) 124.38 84.18 70.37 102.46 87.26 96.99 90.50 91.16 77.10 0.964 0.994α=0.77 0.995α=0.65,β=0.16

SIMD (ns/ray) 13.55 7.42 5.46 10.95 9.29 9.20 8.20 8.61 6.39 0.926 0.967α=0.86 0.993α=0.46,β=0.50

SAH 101.82 69.70 58.02 74.49 68.71 74.58 69.00 70.57 63.13
EPO 24.71 10.28 3.35 17.01 11.33 14.51 14.28 13.21 5.19
LCV 12.92 3.00 1.65 11.01 7.25 3.48 2.90 3.09 1.86

HAIRBALLHAIRBALLHAIRBALLHAIRBALLHAIRBALLHAIRBALLHAIRBALLHAIRBALLHAIRBALLHAIRBALLHAIRBALL
(2850000 tris)(2850000 tris)(2850000 tris)(2850000 tris)(2850000 tris)(2850000 tris)(2850000 tris)(2850000 tris)(2850000 tris)(2850000 tris)(2850000 tris)

Scalar (ns/ray) 287.36 206.19 191.57 288.18 204.50 216.45 279.33 211.42 194.17 0.652 0.992α=0.98 0.994α=0.74,β=0.26

SIMD (ns/ray) 59.56 31.48 29.36 49.65 32.15 33.44 47.69 33.17 31.00 0.816 0.979α=0.89 0.992α=0.37,β=0.63

SAH 664.98 469.00 429.45 479.96 441.95 486.08 482.41 473.90 447.49
EPO 60.47 38.79 28.80 66.16 36.40 41.61 60.71 40.31 32.06
LCV 22.45 5.83 5.09 7.81 6.15 6.07 7.49 6.04 5.55

SANMIGUELSANMIGUELSANMIGUELSANMIGUELSANMIGUELSANMIGUELSANMIGUELSANMIGUELSANMIGUELSANMIGUELSANMIGUEL
(10483269 tris)(10483269 tris)(10483269 tris)(10483269 tris)(10483269 tris)(10483269 tris)(10483269 tris)(10483269 tris)(10483269 tris)(10483269 tris)(10483269 tris)

Scalar (ns/ray) 273.97 186.22 140.65 179.86 149.93 184.84 165.29 172.71 137.93 0.818 0.994α=0.72 0.994α=0.72,β=0.00

SIMD (ns/ray) 35.71 19.80 15.22 20.58 17.15 21.23 18.80 20.05 15.85 0.839 0.982α=0.64 0.991α=0.28,β=0.61

SAH 28.37 20.13 18.71 17.06 15.69 18.50 16.27 17.38 19.95
EPO 20.59 10.38 5.73 10.66 6.87 10.67 9.19 8.72 2.59
LCV 9.18 2.90 2.35 3.67 3.17 3.19 3.01 3.05 2.30

Table 1: Measured performance for scalar and SIMD for each construction algorithm in ns/ray, along with SAH, EPO, and standard
deviation of the number of leaf nodes per ray (LCV), of which the the last is relevant only for SIMD execution. The last three columns give
correlations for SAH-only, combination of SAH and EPO, and finally a combination of SAH, EPO and LCV.

scalar. We create the scalar kernel by exiting 31 of the 32 lanes
of GTX680 immediately after launch. This is a one-line change
to the kernels, and allows a direct comparison of scalar and SIMD
on the same architecture and same code. We also disable adaptive
clocking of the GPU.

Table 1 gives results for nine scenes, diffuse ray measurements for
scalar and SIMD, along with the SAH, EPO and LCV costs, and
the computed correlations. The ray tracing performance is shown
as nanoseconds per ray (ns/ray), because the more typical MRays/s
would have an inverse relationship with SAH and EPO. We will
defer further discussion about LCV to Section 4.2 because it is not
relevant for scalar execution.

4.1 Scalar performance

Although SAH describes the performance reasonably well in sev-
eral scenes, including CONFERENCE and BABYLONIAN, there are
also surprises. For example, in SANMIGUEL Agglo has clearly
lower SAH cost than SBVH but 30% worse scalar performance,
Treelet has 13% lower SAH cost than STreelet but takes 25% longer
to trace, and Bittner and Simulated annealing have almost 20%
lower SAH cost than SBVH or STreelet but are still slower to trace.
In HAIRBALL all of the builders except for LBVH have similar
SAH cost, but the performance varies up to 50%, without an obvi-
ous relation to SAH cost. In SODA BBVH and Agglo have similar
SAH costs but Agglo takes 55% longer to render. Figure 1 further
illustrates these issues.



150
170
190
210
230
250
270
290
310
330
350

SAH

ns/ray

SAH+EPO

ns/ray 

120

140

160

180

200

220

240

260

280

SAH

ns/ray

SAH+EPO

ns/ray 

150

200

250

300

350

150 200 250 300 350

SAH

SAH+EPO

Predicted (ns/ray) 

Measured (ns/ray) 

120

140

160

180

200

220

240

260

280

120 140 160 180 200 220 240 260 280

EPO

SAH+EPO

Predicted (ns/ray) 

Measured (ns/ray) 

HAIRBALL SANMIGUEL

Figure 1: Measured scalar performance for HAIRBALL and SANMIGUEL, along with the predictions from SAH and the combination of
SAH and EPO. All three have been normalized to the scale of performance (ns/ray). The top row visualises the values for each algorithm,
and as can be seen SAH significantly underestimates the performance differences in HAIRBALL and gets the relative ordering badly wrong
in SANMIGUEL, whereas the combination of SAH and EPO closely tracks the measurements in both examples. The bottom graphs plot the
predictions against measurements. Ideally all of the samples would lie on the black line.

When measured in our 22 scenes, the average correlation coefficient
between SAH and performance is 0.915, and perhaps more impor-
tantly the lowest value is a dismal 0.652. If we allow a combination
of SAH and EPO

(1− α)SAH + αEPO; 0 ≤ α ≤ 1, (6)

where α is scene-dependent, all of the scenes are explained very
well, with the correlation coefficient averaging 0.994, and even the
lowest correlation rises to 0.988. For example, the discrepancy in
SODA is explained by Agglo having twice the EPO of BBVH, and
in HAIRBALL the performance appears to be almost completely de-
termined by EPO. The optimal scene-dependent α varies signifi-
cantly, from 0.05 to 0.98, with an average of 0.59.

The optimal combination weight α is necessarily scene-dependent
because in some scenes the rays traverse through (almost) the entire
scene and in some others they are very short. Also, with individual
objects most of the secondary rays fail to hit anything, whereas in
indoor scenes all of them will terminate. As a rule of thumb, EPO
is more important when rays traverse a relatively small part of the
scene; we have not experimented with automatic estimation of α
yet. Results with fixed α are given in Section 4.3.

A remaining uncertainty is whether the inaccuracy of SAH is purely
random or if there is perhaps a systematic bias? To investigate this

we compute the average scalar performance relative to the SAH cost
((ns/ray)/SAH). We select the de facto standard BBVH as the
reference point. It turns out that this metric is 10% below BBVH
for SBVH and STreelet, but 5–10% higher for all non-top-down
methods, i.e., top-down methods are faster than they should be. In
other words, SAH systematically underestimates the performance of
greedy sweep-based top-down builders.1 Since the correlations for
a linear combination of SAH and EPO are very high, these builders
must implicitly optimize EPO when it matters. We will return to
this topic in Section 5.

4.2 SIMD performance

The correlation coefficient between SIMD performance and SAH
averages 0.933, and the lowest correlation is 0.660. The scene-
dependent combination of SAH and EPO pushes the average to
0.979 and the lowest correlation to 0.907, with an average α of
0.50. Although the numbers represent a significant improvement
compared to SAH-only, particularly the minimum is still much
lower than for scalar, and certain discrepancies remain. For exam-
ple, in CONFERENCE Agglo has 18% lower SAH than BBVH, and
15% lower EPO and scalar ns/ray, but for some reason the SIMD

1Similar behavior has been previously documented by Popov et al.
[2009] when investigating a more exhaustive top-down builder.



Correlation with ns/ray
SAH SAH+EPO SAH+EPO+LCV

Scalar Average 0.915 0.994 0.996
Minimum 0.652 0.988 0.988

SIMD Average 0.933 0.979 0.993
Minimum 0.660 0.907 0.988

Table 2: Aggregate results from our 22 test scenes for SAH-only,
combination of SAH and EPO, and finally a combination of SAH,
EPO and LCV.

BBVH BITTNER

Figure 2: Visualization of the number of leaf nodes visited by non-
terminating primary rays in CONFERENCE. Note that this example
uses primary rays for illustration purposes only; the actual mea-
surements use diffuse inter-reflection rays. As can be seen, BBVH
has a more even cost across the image, especially on the tabletop,
where Bittner has a surprising gradient. Agglo also creates the gra-
dient, but Simulated annealing does not, so clearly it is possible to
get low SAH cost and low variance in the number of visited leaf
nodes simultaneously in this scene.

performance is very similar. Bittner also seems every bit as good as
Simulated annealing, but clearly loses in practice.

This raises the question whether the remaining discrepancies are
random or if there is perhaps a systematic bias again? It is certainly
possible that some tree building algorithms generate trees that are
inherently more parallel-friendly. To the best of our knowledge,
this has never been investigated before. If we divide the respective
scalar and SIMD timings in the 22 scenes — which is accurate be-
cause they both run the same code on same hardware — we get an
average speedup factor of ∼13 for BBVH and SBVH, ∼12 for Ag-
glo, Bittner, Hill climbing, Simulated annealing and Treelets, and
10.6 for LBVH. It is therefore clear that greedy top-down builders
consistently create trees that are more SIMD-friendly than the other
methods. We know that this cannot be explained by SAH or EPO,
and therefore it has to be a new, SIMD-specific phenomenon.

Our LCV metric is designed to explain this discrepancy, and the
last column in Table 1 shows the achievable per-scene correlations
taking SAH, EPO, and LCV into account:

(1−α−β)SAH+αEPO+βLCV ; 0 ≤ α, β ≤ 1, α+β ≤ 1.
(7)

This pushes the average correlation coefficient to 0.993 and the
minimum to 0.988. The aggregate results are collected in Table 2,
and Figure 2 gives an example of the practical meaning of LCV.

4.3 Without scene-specific parameters

Interestingly, LCV also seems to improve the average scalar cor-
relation coefficient slightly, by 0.001, but that is probably an illu-
sion: the scene-dependent choice of (α, β) is able to extract a small

amount of seemingly useful information from what is basically in-
consequential randomness for scalar execution. Of the 22 scenes,
the only clear outliers are FAIRY and BUBS that gain about 0.008.
The values of β may seem large in Tables 1 and 3, but that is mainly
because the magnitude of LCV is generally much lower than SAH
or EPO.

In an additional experiment we disallowed the scene-specific vari-
ation of α and β. When the same, fixed α and β are used for
all scenes, the average correlation is 0.980 for scalar (α = 0.71)
and 0.981 for SIMD (α = 0.14, β = 0.76). Although clearly
lower than the correlations achievable using scene-specific param-
eters (0.994 and 0.993), this is still a clear improvement over SAH
alone (0.915 and 0.933).

4.4 Rotated scenes

When we rotate the scenes and the rays 45 degrees around the
(1,1,1)-axis, the average SIMD execution time increases 168%
(90% for SBVH and STreelet, 250% for Agglo, and ∼180% for
the rest). The penalty ranges from negligible in HAIRBALL to a
very severe 10× in CITY. At the same time the average SAH cost
increases by less than 10% for SBVH and STreelet and 50% for the
other methods, thus substantially and consistently underestimating
the true cost incurred by the rotation. However, the rotation causes
EPO to increase by 290% on the average. If we take the average α
(0.50) from Section 4.2, our composite estimate gives a penalty of
165%, which agrees closely with the measured performance. The
key insight here is that scene rotation is much worse for finite rays
than for long rays.

5 Supremacy of top-down builders

Greedy top-down SAH builders (e.g. BBVH [MacDonald and
Booth 1990]) start from the root node that initially contains all tri-
angles, and recursively divide the set of triangles into two parts. At
each step the set of triangles is divided as if this was the last subdi-
vision we were allowed to do. This process maximizes the amount
of worst-case triangle cost saved at every inner node

1

Aroot
Ctri(ABTB − (ALTL +ARTR)), (8)

and thus minimizes the worst-case triangle cost that remains after a
certain number of nodes. Here B is the current node and L and R
are the two child nodes.2

Although it is not clear that this algorithm actually optimizes SAH
(Equation 1) because it focuses exclusively on the worst-case trian-
gle cost and views the rest of the tree as an emergent phenomenon,
some other properties are more readily apparent. The optimization
of worst-case triangle cost biases the resulting trees towards bal-
anced, and at every step the two child nodes are well separated or
have limited overlap.

Measurements confirm that this overlap-avoidance leads to a well-
minimized EPO cost: the average relative to LBVH is 0.45 for Bit-
tner, 0.46 for BBVH, 0.81 for simulated annealing, and 1.07 for
Agglo. This means that the expected amount of extra work at end
points is more than twice as high for Agglo than for BBVH.

The other new cost function, LCV, is also well optimized; BBVH
has the lowest average relative to LBVH, with Bittner 16% and Ag-

2Since the current node is a constant, this can equivalently be written
as minimizing Ctri(ALTL + ARTR), which reveals the more typical in-
terpretation that this approximates the subtree costs with CtriALTL and
CtriARTR.



glo 27% higher than BBVH. We believe that this is the case be-
cause the worst-case optimization and the recursive use of splitting
planes lead to non-overlapping leaf nodes whose spatial sizes are
more uniform than in the other methods.

While we cannot know the global optimum of SAH cost, we can
approximate it as the minimum achieved by any of the builders (ex-
cept SBVH and STreelet that split triangles and thus have a dif-
ferent minimum). This reveals that BBVH leads to near-optimal
results with uniformly tessellated objects such as DRAGON, but on
the average its SAH cost is at least 16% higher than the optimum
(and 15% higher than Bittner), and in BUBS it is as much as 60%
above the optimum. It therefore seems that BBVH is much better
at optimizing the two new metrics (EPO and LCV) than SAH, for
which it was designed.

6 Discussion

The goal of this paper was to find an explanation for the measured
performance, and to better explain what makes certain trees good
for ray tracing. This knowledge allows one to quantify what went
wrong when the expected performance gain fails to materialize.
The next step could be to utilize this knowledge in constructing
better trees. This will require further effort and approximations be-
cause the two new metrics are much harder to compute than SAH:
EPO needs a scene-specific weight for best results and LCV is cur-
rently estimated via sampling.

Since the three descriptors seem to explain the performance so thor-
oughly, it could be that there are no other significant factors. Since
our tree builders emit the nodes into different memory layouts — a
fact realized only very late in the project — the theory predicts that
memory layout is not a significant factor on our test platform. We
verified this by randomly permuting the nodes in memory, and this
affected the performance by less than 1%. This strongly contrasts
with the conventional wisdom that memory layout is a key to good
performance; apparently that is not true on current GPUs after all.

Several authors have recently augmented SAH with visibility infor-
mation in order to accelerate shadow rays [Ize and Hansen 2011;
Vinkler et al. 2012; Feltman et al. 2012]. It could be an interest-
ing future effort to investigate how well their modified equations
describe the performance outside the special case of shadow rays.
It would also be interesting to test how well our metrics describe
the performance of shadow rays that do not need to find the closest
intersection. It seems possible that EPO plays a smaller role there,
but that is yet to be verified.

Our observations suggest that it is important to quote the actual
measurements when evaluating a new tree construction algorithm,
instead of blindly relying on SAH as a proxy for ray tracing per-
formance. It is also important to use a sufficient number of test
scenes (10+) because scene-dependent variation in tree quality can
be significant.

Acknowledgements

Peter Shirley, David McAllister, Jaakko Lehtinen, and anonymous
reviewers for comments and additional references. Anat Grynberg
and Greg Ward for CONFERENCE, University of Utah for FAIRY,
Marko Dabrovic for SIBENIK, Ryan Vance for BUBS, UNC for
POWERPLANT, Samuli Laine for HAIRBALL and VEGETATION,
Guillermo Leal Laguno for SANMIGUEL, Johnathan Good for
ARABIC, BABYLONIAN and ITALIAN, Stanford Computer Graph-
ics Laboratory for ARMADILLO, BUDDHA and DRAGON, Cornell
University for BAR, Georgia Institute of Technology for BLADE.

References

AILA, T., AND LAINE, S. 2009. Understanding the efficiency
of ray traversal on gpus. In Proc. High Performance Graphics,
145–149.

AILA, T., LAINE, S., AND KARRAS, T. 2012. Understanding the
efficiency of ray traversal on gpus – Kepler and Fermi addendum.
Tech. Rep. NVR-2012-02, NVIDIA.

BITTNER, J., HAPALA, M., AND HAVRAN, F. 2013. Fast
insertion-based optimization of bounding volume hierarchies.
Computer Graphics Forum 32, 1, 85–100.

FELTMAN, N., LEE, M., AND FATAHALIAN, K. 2012. SRDH:
specializing BVH construction and traversal order using repre-
sentative shadow ray sets. In Proc. High Performance Graphics,
49–55.

GOLDSMITH, J., AND SALMON, J. 1987. Automatic creation of
object hierarchies for ray tracing. IEEE Comput. Graph. Appl.
7, 5, 14–20.

HAVRAN, V. 2000. Heuristic Ray Shooting Algorithms. Ph.d. the-
sis, Department of Computer Science and Engineering, Faculty
of Electrical Engineering, Czech Technical University in Prague.

IZE, T., AND HANSEN, C. 2011. RTSAH traversal order for oc-
clusion rays. Comp. Graph. Forum 30, 2, 297–305.

JAKOB, W., 2010. Mitsuba renderer.
http://www.mitsuba-renderer.org.

KARRAS, T., AND AILA, T. 2013. Fast parallel construction
of high-quality bounding volume hierarchies. In Proc. High-
Performance Graphics.

KARRAS, T. 2012. Maximizing parallelism in the construction
of BVHs, octrees, and k-d trees. In Proc. High-Performance
Graphics, 33–37.

KENSLER, A. 2008. Tree rotations for improving bounding vol-
ume hierarchies. In Proc. IEEE Symposium on Interactive Ray
Tracing, 73–76.

LAUTERBACH, C., GARLAND, M., SENGUPTA, S., LUEBKE, D.,
AND MANOCHA, D. 2009. Fast BVH construction on GPUs.
Computer Graphics Forum 28, 2, 375–384.

MACDONALD, D. J., AND BOOTH, K. S. 1990. Heuristics for ray
tracing using space subdivision. Vis. Comput. 6, 3, 153–166.

NG, K., AND TRIFONOV, B. 2003. Automatic bounding volume
hierarchy generation using stochastic search methods. In Proc.
Mini-Workshop on Stochastic Search Algorithms.

POPOV, S., GEORGIEV, I., DIMOV, R., AND SLUSALLEK, P.
2009. Object partitioning considered harmful: space subdivision
for BVHs. In Proc. High Performance Graphics, 15–22.

STICH, M., FRIEDRICH, H., AND DIETRICH, A. 2009. Spa-
tial splits in bounding volume hierarchies. In Proc. High-
Performance Graphics, 7–13.

VINKLER, M., HAVRAN, V., AND SOCHOR, J. 2012. Visibility
driven BVH build up algorithm for ray tracing. Computers &
Graphics 36, 4, 283–296.

WALTER, B., BALA, K., KULKARNI, M., AND PINGALI, K.
2008. Fast agglomerative clustering for rendering. In Proc. IEEE
Symposium on Interactive Ray Tracing, 81–86.



Scene Metric Builder Correlation with ns/ray
LBVH BBVH SBVH Agglo Bittner H.Climb Anneal. Treelet STreelet SAH SAH+EPO SAH+EPO+LCV

SIBENIKSIBENIKSIBENIKSIBENIKSIBENIKSIBENIKSIBENIKSIBENIKSIBENIKSIBENIKSIBENIK
(80057 tris)(80057 tris)(80057 tris)(80057 tris)(80057 tris)(80057 tris)(80057 tris)(80057 tris)(80057 tris)(80057 tris)(80057 tris)

Scalar (ns/ray) 108.81 84.32 73.48 97.94 78.13 84.53 85.69 82.10 82.44 0.925 0.991α=0.76 0.991α=0.76,β=0.00

SIMD (ns/ray) 9.50 6.11 5.22 7.11 5.78 6.20 6.15 6.00 6.11 0.975 0.988α=0.45 0.996α=0.13,β=0.78

SAH 69.71 53.82 47.45 55.48 47.84 52.44 49.41 50.57 52.40
EPO 10.88 5.01 1.68 9.69 4.13 5.89 6.06 5.21 3.07
LCV 3.48 1.46 1.30 1.69 1.58 1.58 1.52 1.56 1.42

CRYTEK-SPONCRYTEK-SPONCRYTEK-SPONCRYTEK-SPONCRYTEK-SPONCRYTEK-SPONCRYTEK-SPONCRYTEK-SPONCRYTEK-SPONCRYTEK-SPONCRYTEK-SPON
(262266 tris)(262266 tris)(262266 tris)(262266 tris)(262266 tris)(262266 tris)(262266 tris)(262266 tris)(262266 tris)(262266 tris)(262266 tris)

Scalar (ns/ray) 203.67 127.71 89.45 121.07 92.25 125.47 106.16 118.34 91.66 0.956 0.995α=0.84 0.995α=0.66,β=0.23

SIMD (ns/ray) 16.58 8.92 6.44 9.03 7.02 9.18 8.03 8.96 6.97 0.961 0.985α=0.75 0.993α=0.19,β=0.77

SAH 127.45 84.29 70.87 72.96 65.72 78.36 68.45 74.69 73.25
EPO 27.01 13.21 3.56 10.36 5.88 12.58 7.83 10.06 2.00
LCV 8.21 2.55 1.84 2.78 2.52 2.79 2.70 2.72 1.68

BARBARBARBARBARBARBARBARBARBARBAR
(234370 tris)(234370 tris)(234370 tris)(234370 tris)(234370 tris)(234370 tris)(234370 tris)(234370 tris)(234370 tris)(234370 tris)(234370 tris)

Scalar (ns/ray) 130.38 97.66 75.41 84.82 76.63 87.95 76.28 79.68 77.58 0.960 0.992α=0.56 0.992α=0.56,β=0.00

SIMD (ns/ray) 12.77 7.29 5.64 6.97 6.54 7.00 5.98 6.46 6.08 0.949 0.987α=0.60 0.999α=0.12,β=0.77

SAH 62.07 42.78 37.90 38.47 33.60 39.50 33.79 36.91 40.50
EPO 20.19 9.82 2.80 9.55 6.41 9.78 6.88 7.79 2.72
LCV 5.91 1.87 1.33 2.19 2.36 1.79 1.85 1.77 1.41

POWERPLA-16POWERPLA-16POWERPLA-16POWERPLA-16POWERPLA-16POWERPLA-16POWERPLA-16POWERPLA-16POWERPLA-16POWERPLA-16POWERPLA-16
(295545 tris)(295545 tris)(295545 tris)(295545 tris)(295545 tris)(295545 tris)(295545 tris)(295545 tris)(295545 tris)(295545 tris)(295545 tris)

Scalar (ns/ray) 210.53 123.61 76.98 130.21 107.76 126.10 110.86 120.05 100.00 0.985 0.998α=0.59 0.998α=0.58,β=0.15

SIMD (ns/ray) 24.27 10.77 6.01 12.67 9.71 11.01 9.76 10.60 8.64 0.990 0.993α=0.31 0.998α=0.34,β=0.48

SAH 46.24 27.53 20.82 27.95 23.70 28.03 24.29 26.10 24.47
EPO 27.78 12.10 3.60 14.89 10.03 15.15 11.45 12.61 8.33
LCV 17.46 4.02 1.74 4.72 4.70 3.57 3.36 3.60 2.25

CITYCITYCITYCITYCITYCITYCITYCITYCITYCITYCITY
(878701 tris)(878701 tris)(878701 tris)(878701 tris)(878701 tris)(878701 tris)(878701 tris)(878701 tris)(878701 tris)(878701 tris)(878701 tris)

Scalar (ns/ray) 233.10 98.62 71.48 99.11 81.77 113.12 88.03 99.30 84.32 0.993 0.999α=0.48 0.999α=0.35,β=0.21

SIMD (ns/ray) 19.57 6.77 4.88 7.85 6.81 8.06 6.68 7.37 6.01 0.982 0.991α=0.61 0.997α=0.17,β=0.61

SAH 75.17 39.50 32.89 35.99 33.25 42.18 33.57 36.77 35.51
EPO 40.11 11.66 3.96 13.29 8.97 16.57 11.57 12.68 6.13
LCV 6.20 1.61 1.22 4.33 3.00 1.70 1.75 1.71 1.27

ARABICARABICARABICARABICARABICARABICARABICARABICARABICARABICARABIC
(411599 tris)(411599 tris)(411599 tris)(411599 tris)(411599 tris)(411599 tris)(411599 tris)(411599 tris)(411599 tris)(411599 tris)(411599 tris)

Scalar (ns/ray) 240.38 114.16 74.07 113.25 97.09 133.87 99.30 117.23 84.60 0.993 0.994α=0.43 0.995α=0.25,β=0.56

SIMD (ns/ray) 22.99 8.38 5.30 8.98 7.92 10.30 7.79 9.42 6.60 0.985 0.985α=0.07 0.995α=0.07,β=0.87

SAH 132.57 80.41 54.79 72.51 67.80 80.20 66.79 74.34 59.23
EPO 48.76 19.09 3.97 18.17 14.61 23.64 15.33 19.06 6.66
LCV 11.04 2.92 1.62 3.59 3.56 3.25 2.77 3.01 2.00

ITALIANITALIANITALIANITALIANITALIANITALIANITALIANITALIANITALIANITALIANITALIAN
(368413 tris)(368413 tris)(368413 tris)(368413 tris)(368413 tris)(368413 tris)(368413 tris)(368413 tris)(368413 tris)(368413 tris)(368413 tris)

Scalar (ns/ray) 153.37 69.49 43.86 69.93 55.87 78.00 61.73 66.80 48.26 0.993 0.994α=0.26 0.996α=0.05,β=0.77

SIMD (ns/ray) 10.70 4.38 2.71 4.73 3.71 5.07 4.00 4.49 3.14 0.989 0.990α=0.27 0.995α=0.03,β=0.85

SAH 104.08 62.20 43.07 55.24 49.97 62.06 50.78 57.10 47.41
EPO 45.00 19.15 2.76 18.74 13.05 22.59 14.91 19.17 6.15
LCV 5.55 1.88 0.99 2.33 2.37 1.96 1.91 1.96 1.19

MUSTANGMUSTANGMUSTANGMUSTANGMUSTANGMUSTANGMUSTANGMUSTANGMUSTANGMUSTANGMUSTANG
(14279 tris)(14279 tris)(14279 tris)(14279 tris)(14279 tris)(14279 tris)(14279 tris)(14279 tris)(14279 tris)(14279 tris)(14279 tris)

Scalar (ns/ray) 78.86 58.96 53.16 59.56 55.01 62.50 55.87 59.67 57.54 0.988 0.999α=0.50 0.999α=0.45,β=0.10

SIMD (ns/ray) 5.60 3.73 3.39 3.97 3.72 4.16 3.64 4.06 3.86 0.978 0.989α=0.51 0.993α=0.07,β=0.82

SAH 63.04 45.39 41.97 45.23 41.71 47.72 42.77 45.51 46.38
EPO 13.52 6.39 2.35 7.52 5.09 7.93 6.12 7.01 4.37
LCV 3.15 1.69 1.47 1.91 1.89 1.90 1.74 1.86 1.59

VEYRONVEYRONVEYRONVEYRONVEYRONVEYRONVEYRONVEYRONVEYRONVEYRONVEYRON
(1334385 tris)(1334385 tris)(1334385 tris)(1334385 tris)(1334385 tris)(1334385 tris)(1334385 tris)(1334385 tris)(1334385 tris)(1334385 tris)(1334385 tris)

Scalar (ns/ray) 122.10 97.85 90.01 128.70 97.47 100.30 114.29 99.01 94.16 0.794 0.991α=0.84 0.991α=0.84,β=0.00

SIMD (ns/ray) 13.98 8.87 7.79 12.13 8.98 9.26 10.38 9.27 8.87 0.959 0.989α=0.49 0.992α=0.21,β=0.69

SAH 133.17 105.25 98.30 114.65 99.75 106.83 109.14 103.77 104.39
EPO 11.10 6.29 2.85 16.12 6.79 7.55 13.05 7.18 3.76
LCV 5.34 2.06 1.83 2.58 2.15 2.15 2.23 2.12 1.84

ARMADILLOARMADILLOARMADILLOARMADILLOARMADILLOARMADILLOARMADILLOARMADILLOARMADILLOARMADILLOARMADILLO
(345944 tris)(345944 tris)(345944 tris)(345944 tris)(345944 tris)(345944 tris)(345944 tris)(345944 tris)(345944 tris)(345944 tris)(345944 tris)

Scalar (ns/ray) 92.34 75.87 75.82 89.61 80.26 81.43 88.11 81.83 81.50 0.922 0.994α=0.44 0.996α=0.14,β=0.76

SIMD (ns/ray) 7.86 6.02 6.05 7.23 6.42 6.55 7.07 6.69 6.65 0.966 0.986α=0.26 0.989α=0.07,β=0.87

SAH 43.75 33.25 33.23 38.48 34.35 36.61 37.49 35.25 35.65
EPO 3.07 1.43 1.40 7.84 3.20 2.86 7.04 3.31 2.64
LCV 1.84 1.25 1.25 1.32 1.29 1.30 1.28 1.32 1.30

BUDDHABUDDHABUDDHABUDDHABUDDHABUDDHABUDDHABUDDHABUDDHABUDDHABUDDHA
(1085635 tris)(1085635 tris)(1085635 tris)(1085635 tris)(1085635 tris)(1085635 tris)(1085635 tris)(1085635 tris)(1085635 tris)(1085635 tris)(1085635 tris)

Scalar (ns/ray) 108.81 91.66 88.97 110.62 94.25 96.15 105.71 95.79 92.94 0.905 0.994α=0.67 0.995α=0.22,β=0.72

SIMD (ns/ray) 10.68 8.32 8.00 10.10 8.49 8.86 9.58 9.01 8.75 0.979 0.991α=0.32 0.991α=0.18,β=0.50

SAH 81.65 64.48 62.05 74.19 64.58 69.46 71.67 67.91 65.80
EPO 6.83 3.84 2.31 11.89 5.04 5.42 9.85 5.66 3.50
LCV 2.14 1.42 1.36 1.57 1.49 1.48 1.44 1.48 1.39

BLADEBLADEBLADEBLADEBLADEBLADEBLADEBLADEBLADEBLADEBLADE
(1765388 tris)(1765388 tris)(1765388 tris)(1765388 tris)(1765388 tris)(1765388 tris)(1765388 tris)(1765388 tris)(1765388 tris)(1765388 tris)(1765388 tris)

Scalar (ns/ray) 89.61 75.41 75.41 103.41 78.68 80.13 93.37 79.68 81.57 0.936 0.999α=0.65 0.999α=0.43,β=0.37

SIMD (ns/ray) 8.33 6.25 6.25 8.66 6.55 6.65 7.76 6.81 7.21 0.989 0.990α=0.10 0.990α=0.10,β=0.00

SAH 94.05 73.38 73.39 96.43 75.41 79.45 86.99 77.64 80.32
EPO 2.30 0.15 0.15 14.48 1.64 1.51 8.96 1.62 1.78
LCV 1.83 1.05 1.05 1.16 1.08 1.09 1.12 1.09 1.09

VEGETATIONVEGETATIONVEGETATIONVEGETATIONVEGETATIONVEGETATIONVEGETATIONVEGETATIONVEGETATIONVEGETATIONVEGETATION
(1098132 tris)(1098132 tris)(1098132 tris)(1098132 tris)(1098132 tris)(1098132 tris)(1098132 tris)(1098132 tris)(1098132 tris)(1098132 tris)(1098132 tris)

Scalar (ns/ray) 460.83 278.55 141.64 287.36 274.73 281.69 277.78 273.97 138.12 0.998 0.998α=0.05 1.000α=0.62,β=0.38

SIMD (ns/ray) 67.11 32.47 17.45 35.09 33.78 34.60 33.44 34.69 18.06 0.980 0.980α=0.00 0.999α=0.35,β=0.65

SAH 175.61 119.73 75.16 119.64 111.91 120.49 117.31 118.45 73.30
EPO 191.95 113.75 13.89 114.99 105.47 112.74 112.29 111.31 9.86
LCV 134.14 24.09 3.56 23.86 27.37 25.17 22.28 24.55 3.72

Table 3: Measurements for the rest of the test scenes.


