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A highly detailed digital painting of a
portal in a mystic forest with many

beautiful trees. A person is standing
in front of the portal.

A highly detailed zoomed-in digital
painting of a cat dressed as a witch
wearing a wizard hat in a haunted

house, artstation.

An image of a beautiful landscape of
an ocean. There is a huge rock in the

middle of the ocean. There is a
mountain in the background. Sun is

setting.

Style reference

A photo of a
duckling wearing
a medieval soldier
helmet and riding

a skateboard. A digital painting of a half-frozen lake near mountains under a full
moon and aurora. A boat is in the middle of the lake. Highly detailed.

Figure 1. Example results and capabilities from our proposed method, eDiff-I. The first row shows that eDiff-I can faithfully turn
complex input text prompts into artistic and photorealistic images. In the second row, we first show that eDiff-I can combine the text
input and a reference image for generating the target output image, where the reference image can be conveniently used to represent a style
or concept that is difficult to describe in words, but a visual example exists. We also show the paint-by-word capability of eDiff-I, where
phrases in the input text can be painted on a canvas to control the specific layout of objects described in the input text. The paint-with-words
capability complements the text-to-image capability and provides an artist with more control over the generation outputs. More results are
available at https://deepimagination.cc/eDiff-I/
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Abstract

Large-scale diffusion-based generative models have led
to breakthroughs in text-conditioned high-resolution image
synthesis, demonstrating complex text comprehension and
outstanding zero-shot generalization. Starting from random
noise, such text-to-image diffusion models gradually synthe-
size images in an iterative fashion while conditioning on
text prompts. We find that their synthesis behavior qualita-
tively changes throughout this process: Early in sampling,
generation strongly relies on the text prompt to generate text-
aligned content, while later, the text conditioning is almost
entirely ignored, and the task changes to producing outputs
of high visual fidelity. This suggests that sharing model
parameters throughout the entire generation process, the
standard practice in the literature, may not be ideal to best
capture these distinctly different modes of the generation
process. Therefore, in contrast to existing works, we propose
to train an ensemble of text-to-image diffusion models spe-
cialized for different synthesis stages. To maintain training
efficiency, we initially train a single model, which is then
progressively split into specialized models that are further
trained for the specific stages of the iterative generation pro-
cess. Our ensemble of diffusion models, called eDiff-I,
results in improved text alignment while maintaining the
same inference computation cost and preserving high visual
quality, outperforming previous large-scale text-to-image
diffusion models on the standard benchmark. In addition,
we train our model to exploit a variety of embeddings for
conditioning, including the T5 text, CLIP text, and CLIP
image embeddings. We show that these different embeddings
lead to different image formation behaviors. Notably, the
CLIP image embedding allows an intuitive and instant way
of transferring the style of a reference image to the target
text-to-image output. Lastly, we show a technique that en-
ables eDiff-I’s “paint-with-words” capability. A user
can select the word in the input text and paint it in a can-
vas to control the output, which is very handy for crafting
the desired image in mind. The project page is available at
https://deepimagination.cc/eDiff-I/

1. Introduction
Diffusion models [26,69,73] that generate images through

iterative denoising, as visualized in Figure 2, are revolu-
tionizing the field of image generation. They are the core
building block of recent text-to-image models, which have
demonstrated astonishing capability in turning complex text
prompts into photorealistic images, even for unseen novel
concepts [57, 59, 63]. These models have led to the develop-
ment of numerous interactive tools and creative applications
and turbocharged the democratization of content creation.

Arguably, this success is attributed largely to the great
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Figure 2. Synthesis in diffusion models corresponds to an iterative
denoising process that gradually generates images from random
noise; a corresponding stochastic process is visualized for a one-
dimensional distribution. Usually, the same denoiser neural net-
work is used throughout the entire denoising process. In eDiff-I,
we instead train an ensemble of expert denoisers that are specialized
for denoising in different intervals of the generative process.

scalability of diffusion models because the scalability pro-
vides a clear pathway for practitioners to translate larger
model capacity, compute, and datasets into better image
generation quality. This is a great reminder of the bitter
lessons [75], which observe that a scalable model trained on
vast data with massive computing power in the long term
often outperforms its handcrafted specialized counterparts.
A similar trend has been observed previously in natural lan-
guage modeling [33], image classification [23], image recon-
struction [38], and autoregressive generative modeling [21].

We are interested in further scaling diffusion models in
terms of model capability for the text-to-image generation
task. We first note that simply increasing the capacity by
using deeper or wider neural networks for each denoising
step will negatively impact the test-time computational com-
plexity of sampling, since sampling amounts to solving a
reverse (generative) differential equation in which a denois-
ing network is called many times. We aim to achieve the
scaling goal without incurring the test-time computational
complexity overhead.

Our key insight is that text-to-image diffusion models
exhibit an intriguing temporal dynamic during generation.
At the early sampling stage, when the input data to the de-
noising network is closer to the random noise, the diffusion
model mainly relies on the text prompt to guide the sampling
process. As the generation continues, the model gradually
shifts towards visual features to denoise images, mostly ig-
noring the input text prompt as shown in Figure 3 and 4.
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A 4k dslr photo of 
dog dressed in an 
apron. The dog is 
cooking outdoor. 
There are fresh 
vegetables on the 
counter.

Self-attention 
maps

T5 attention 
maps

CLIP text 
attention maps

Figure 3. Visualization of attention maps at different noise levels. We plot the self-attention heat maps for visual features (top). Each value
indicates how often the visual feature at this location is used and is the result of averaging over all attention queries. We also plot the
cross-attention heat maps (bottom), where each value indicates how often the corresponding text token is used. We plot the cross-attention
heat maps for both the T5 text tokens and the CLIP text tokens. Note that our cross-attention layer also includes a null token, which is
not shown in the figure. When the attention values for all text tokens are low, the null token is mostly attended. The figure shows that the
text attention value is strong at higher noise levels where the core image formation occurs. In these regions, the model relies on the text
to generate a rough layout consistent with the text description. On the other hand, at lower noise levels, the text attention value is weak
because the images are mostly formed at this point. The models need not rely on text information for denoising. Conversely, in the case of
self-attention maps, the attention values are evenly distributed at higher noise levels, as the image content in these regions is not informative.
At lower noise levels, the attention maps exhibit patterns better correlated with the image content.

100% 93% 7% 70% 30% 40% 60% 100%

Prompt #1: A 4k dslr image of a lemur wearing a red magician hat 
and a blue coat performing magic tricks with cards in a garden.

Prompt #2: A 4k dslr photo of a cute lion cub floating in a 
bowl of honey.

Figure 4. Impact of prompt switching during iterative denoising. We change the input text to Prompt #2 after a fixed percentage of denoising
steps have been performed using Prompt #1. From left to right, the 5 images are produced with different transition percentages, which are
0%, 7%, 30%, 60%, and 100%, as visualized in the figure. Comparing the first and second outputs, we note that the text inputs have no
visible impact on the output when used in the last 7% of denoising, which suggests text prompt is not used at the end of iterative denoising.
The third output shows influences from both prompts, where the lemur and cards are replaced with lion and honey, respectively. The fourth
output suggests the text input in the first 40% of denoising is overridden by the text input in the remaining 60%. From these results, we find
the denoiser utilizes text input differently at different noise levels.

Motivated by this observation, we propose to increase
the capacity of diffusion models by training an ensemble of
expert denoisers, each specialized for a particular stage in
the generation process. While this does not increase the com-
putational complexity of sampling per time step, it increases
the training complexity since different denoising models
should be trained for different stages. To remedy this, we
propose pre-training a shared diffusion model for all stages.
We then use this pre-trained model to initialize specialized
models and finetune them for a smaller number of itera-

tions. This scheme leads to state-of-the-art text-to-image
generation results on the benchmark dataset.

We also explore using an ensemble of pretrained text en-
coders to provide inputs to our text-to-image model. We use
both the CLIP text encoder [55], which is trained to align
text embedding to the corresponding image embedding, and
the T5 text encoder [56], which is trained for the language
modeling task. Although prior works [51,57,59,60,63] have
used these two encoders, they have not been used together in
one model. As these two encoders are trained with different
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objectives, their embeddings favor formations of different
images with the same input text. While CLIP text embed-
dings help determine the global look of the generated images,
the outputs tend to miss the fine-grained details in the text.
In contrast, images generated with T5 text embeddings alone
better reflect the individual objects described in the text, but
their global looks are less accurate. Using them jointly pro-
duces the best image-generation results in our model. In
addition to text embeddings, we train our model to leverage
the CLIP image embedding of an input image, which we
find useful for style transfer. We call our complete model
ensemble diffusion for images, abbreviated eDiff-I.

While text prompts are effective in specifying the objects
to be included in the generated images, it is cumbersome to
use text to control the spatial locations of objects. We devise
a training-free extension of our model to allow paint-with-
words, a controllable generation approach with our text-to-
image model that allows the user to specify the locations of
specific objects and concepts by scribbling them in a canvas.
The result is an image generation model that can take both
texts and semantic masks as inputs to better assist users in
crafting the perfect images in their minds.

Contributions The main contributions of our work are

1. Based on the observation that a text-to-image diffusion
model has different behaviors at different noise levels,
we propose the ensemble-of-expert-denoisers design to
boost generation quality while maintaining the same
inference computation cost. The expert denoisers are
trained through a carefully designed finetuning scheme
to reduce the training cost.

2. We propose to use an ensemble of encoders to provide
input information to the diffusion model. They include
the T5 text encoder, the CLIP text encoder, and the
CLIP image encoder. We show that the text encoders
favor different image formations, and the CLIP image
encoder provides a useful style transfer capability that
allows a user to use a style reference photo to influence
the text-to-image output.

3. We devise a training-free extension that enables the
paint-with-words capability through a cross-attention
modulation scheme, which allows users additional spa-
tial control over the text-to-image output.

2. Related Work
Denoising Diffusion models [26, 69, 73] are a class of

deep generative models that generate samples through an
iterative denoising process. These models are trained with
denoising score matching [31, 79] objectives at different
noise levels and thus are also known as noise-conditioned

score networks [71, 72]. They have driven successful appli-
cations such as text-to-image generation [57, 59, 63], natural
language generation [41], time series prediction [76], audio
synthesis [39], 3D shape generation [49, 87, 91], molecu-
lar conformation generation [84], protein structure genera-
tion [83], machine learning security [52], and differentially
private image synthesis [14].

Text-to-image diffusion models Some of the most high-
quality text-to-image generative models are based on dif-
fusion models. These models learn to perform the denois-
ing task conditioned on text prompts, either on the image
space (such as GLIDE [51] and Imagen [63]) or on a sep-
arate latent space (such as DALL·E 2 [57], Stable Diffu-
sion [59, 60], and VQ-Diffusion [19]). For computational ef-
ficiency, a diffusion model is often trained on low-resolution
images or latent variables, which are then transformed into
high-resolution images by super-resolution diffusion mod-
els [27] or latent-to-image decoders [68, 77]. Samples are
drawn from these diffusion models using classifier(-free)
guidance [13, 28] as well as various sampling algorithms
that use deterministic [15, 34, 43, 46, 70, 89] or stochas-
tic [4, 5, 16, 90] iterative updates. Several works retrieve
auxiliary images related to the text prompt from an external
database and condition generation on them to boost perfor-
mance [7, 9, 66]. Recently, several text-to-video diffusion
models were proposed and achieved high-quality video gen-
eration results [20, 25, 29, 67, 85].

Applications of text-to-image diffusion models Apart
from serving as a backbone to be fine-tuned for general
image-to-image translation tasks [80], text-to-image diffu-
sion models have also demonstrated impressive capabilities
in other downstream applications. Diffusion models can be
directly applied to various inverse problems, such as super-
resolution [13, 64], inpainting [11, 47], deblurring [35, 82],
and JPEG restoration [36, 62]. For example, blended dif-
fusion [2, 3] performs inpainting with natural language de-
scriptions. Text-to-image diffusion models can also perform
other semantic image editing tasks. SDEdit [50] enables
re-synthesis, compositing, and editing of an existing image
via colored strokes or image patches. DreamBooth [61] and
Textual Inversion [18] allow the “personalization” of mod-
els by learning a subject-specific token from a few images.
Prompt-to-prompt tuning can achieve image editing by mod-
ifying the textual prompt used to produce the same image
without having the user provide object-specific segmentation
masks [22]. Similar image-editing capabilities can also be
achieved by fine-tuning the model parameters [37, 78] or
automatically finding editing masks with the denoiser [12].

Scaling up deep learning models The recent success of
deep learning has primarily been driven by increasingly large
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models and datasets. It has been shown that simply scaling
up model parameters and data size results in substantial per-
formance improvement in various tasks, such as language
understanding [8, 10], visual recognition [88], and multi-
modal reasoning [55]. However, those high-capacity models
also incur increased computational and energy costs during
training and inference. Some recent works [1,58,65] employ
sparse expert models which route each input example to a
small subset of network weights, thereby keeping the amount
of computation tractable as scaling. Similarly, our proposed
expert denoisers increase the number of trainable parameters
without adding the computational cost at test time.

3. Background
In text-to-image generative models, the input text is of-

ten represented by a text embedding, extracted from a pre-
trained model such as CLIP [55] or T5 [56] text encoders.
In this case, the problem of generating images given text
prompts simply boils down to learning a conditional genera-
tive model that takes text embeddings as input conditioning
and generates images aligned with the conditioning.

Text-to-image diffusion models generate data by sam-
pling an image from a noise distribution and iteratively de-
noising it using a denoising model D(x; e, σ) where x rep-
resents the noisy image at the current step, e is the input
embedding, and σ is a scalar input indicating the current
noise level. Next, we formally discuss how the denoising
model is trained and used for sampling.

Training The denoising model is trained to recover clean
images given their corrupted versions, generated by adding
Gaussian noise of varying scales. Following the EDM for-
mulation of Karras et al. [34] and their proposed corruption
schedule [34, 70], we can write the training objective as:

Epdata(xclean,e),p(ϵ),p(σ)[λ(σ)∥D(xclean +σϵ; e, σ)−xclean∥22]

where pdata(xclean, e) represents the training data distribution
that produces training image-text pairs, p(ϵ) = N (0, I) is
the standard Normal distribution, p(σ) is the distribution in
which noise levels are sampled from, and λ(σ) is the loss
weighting factor.

Denoiser formulation Following Karras et al. [34], we
precondition the denoiser using:

D(x; e,σ) :=
(σdata

σ∗

)2

x+
σ · σdata

σ∗ Fθ

( x

σ∗ ; e,
ln(σ)

4

)
(1)

where σ∗=
√
σ2 + σ2

data and Fθ is the trained neural net-
work. We use σdata = 0.5 as an approximation for the stan-
dard deviation of pixel values in natural images. For σ,
we use the log-normal distribution ln(σ) ∼ N (Pmean, Pstd)
with Pmean = −1.2 and Pstd = 1.2, and weighting factor

λ(σ) = (σ∗/(σ · σdata))
2 that cancels the output weighting

of Fθ in (1).

Sampling To generate an image with the diffusion models,
an initial image is generated by sampling from the prior dis-
tribution x ∼ N (0, σ2

maxI), and then the generative ordinary
differential equation (ODE) is solved using:

dx

dσ
= −σ∇x log p(x|e, σ) = x−D(x; e, σ)

σ
(2)

for σ flowing backward from σmax to σmin ≈ 0. Above,
∇x log p(x|e, σ) represents the score function of the cor-
rupted data at noise level σ which is obtained from the de-
noising model [31, 79]. Above σmax represents a high noise
level at which all the data is completely corrupted, and the
mutual information between the input image distribution and
the corrupted image distribution is approaching zero. Note
that sampling can also be expressed as solving a stochastic
differential equation as discussed in Song et al. [73].

Super-resolution diffusion models The training of text-
conditioned super-resolution diffusion models largely fol-
lows the training of text-conditioned diffusion models de-
scribed above. The major difference is that the super-
resolution denoising model also takes the low-resolution
image as a conditioning input. Following prior work [57],
we apply various corruptions to the low-resolution input
image during training [81] to enhance the generalization
capability of the super-resolution model.

4. Ensemble of Expert Denoisers
As we discussed in the previous section, text-to-image dif-

fusion models rely on a denoising model to convert samples
from a prior Gaussian distribution to images conditioned
on an input text prompt. Formally, the generative ODE
shown in (2) uses D(x; e, σ) to guide the samples gradually
towards images that are aligned with the input conditioning.

The denoising model D at each noise level σ relies on
two sources of information for denoising: the current noisy
input image x and the input text prompt e. Our key observa-
tion is that text-to-image diffusion models exhibit a unique
temporal dynamic while relying on these two sources. At the
beginning of the generation, when σ is large, the input image
x contains mostly noise. Hence, denoising directly from the
input visual content is a challenging and ambiguous task. At
this stage, D mostly relies on the input text embedding to
infer the direction toward text-aligned images. However, as
σ becomes small towards the end of the generation, most
coarse-level content is painted by the denoising model. At
this stage, D mostly ignores the text embedding and uses
visual features for adding fine-grained details.

We validate this observation in Figure 3 by visualizing
the cross-attention maps between visual and text features
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compared to the self-attention maps on the visual features at
different stages of generation. In Figure 4, we additionally
examine how the generated sample changes as we switch
the input caption from one prompt to another at different
stages of the denoising process. When the prompt switching
happens at the last 7% of denoising, the generation output
remains the same. On the other hand, when the prompt
switching happens at the first 40% of the training, the output
changes completely.

In most existing works on diffusion models, the denois-
ing model is shared across all noise levels, and the temporal
dynamic is represented using a simple time embedding that
is fed to the denoising model via an MLP network. We ar-
gue that the complex temporal dynamics of the denoising
diffusion may not be learned from data effectively using a
shared model with a limited capacity. Instead, we propose to
scale up the capacity of the denoising model by introducing
an ensemble of expert denoisers; each expert denoiser is a
denoising model specialized for a particular range of noise
levels (see Figure 2). This way, we can increase the model
capacity without slowing down the sampling since the com-
putational complexity of evaluating D at each noise level
remains the same.

However, naively training separate denoising models for
different stages can significantly increase the training cost
since one needs to train each expert denoiser from scratch.
To remedy this, we first train a shared model across all noise
levels. We then use this model to initialize the denoising
experts in the next stage. Next, we discuss how we formally
create denoising experts from a pre-trained model iteratively.

4.1. Efficient Training of Expert Denoisers

We propose a branching strategy based on a binary tree
implementation for training the expert denoisers efficiently.
We begin by training a model shared among all noise levels
using the full noise level distribution denoted as p(σ). Then,
we initialize two experts from this baseline model. Let us
call these models the level 1 experts since they are trained
on the first level of the binary tree. These two experts are
trained on the noise distributions p10(σ) and p11(σ), which
are obtained by splitting p(σ) equally by area. So, the expert
trained on p10(σ) specializes in low noise levels, while the
expert trained on p11(σ) specializes in high noise levels. In
our implementation, p(σ) follows a log-normal distribution
(Sec. 3). Recently, Luhman et al. [48] have also trained two
diffusion models for two-stage denoising for image gener-
ation, but their models are trained over images of different
resolutions and separately from the beginning.

Once the level 1 expert models are trained, we split each
of their corresponding noise intervals in a similar fashion
as described above and train experts for each sub-interval.
This process is repeated recursively for multiple levels. In
general, at level l, we split the noise distribution p(σ) into 2l

Super 
Resolution 
Model #1

Base 
Diffusion 

Model
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Figure 5. eDiff-I consists of a base diffusion model that gener-
ates images in 64×64 resolution. This is followed by two super-
resolution diffusion models that upsample the images to 256×256
and 1024×1024 resolution, respectively, referred to as SR256 and
SR1024 through the paper. All models are conditioned on text
through both T5 and CLIP text embeddings. eDiff-I also allows
the user to optionally provide an additional CLIP image embed-
ding. This can enable detailed stylistic control over the output (see
Figures 1 and 16).

intervals of equal area given by {pli(σ)}2
l−1

i=0 , with model i
being trained on the distribution pli(σ). We call such a model
or node in the binary tree El

i .
Ideally, at each level l, we would have to train 2l models.

However, this is impractical as the model size grows expo-
nentially with the depth of the binary tree. Also, in practice,
we found that models trained at many of the intermediate
intervals do not contribute much toward the performance of
the final system. Therefore, we focus mainly on growing the
tree from the left-most and the right-most nodes at each level
of the binary tree: El

0 and El
2l−1. The right-most interval

contains samples at high noise levels. As shown in Figures 3
and 4, good denoising at high noise levels is critical for im-
proving text conditioning as core image formation occurs in
this regime. Hence, having a dedicated model in this regime
is desired. Similarly, we also focus on training the models at
lower noise levels as the final steps of denoising happen in
this regime during sampling. So, good models are needed
to get sharp results. Finally, we train a single model on all
the intermediate noise intervals that are between the two
extreme intervals.

In a nutshell, our final system would have an ensemble
of three expert denoisers: an expert denoiser focusing on
the low noise levels (given by the leftmost interval in the
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binary tree), an expert denoiser focusing on high noise levels
(given by the right-most interval in the binary tree), and a
single expert denoiser for learning all intermediate noise
intervals. A more detailed description of our branching
strategy is described in Appendix B. In Sec. 5, we also
consider other types of ensemble experts for quantitative
evaluation purposes.

4.2. Multiple Conditional Inputs

To train our text-to-image diffusion models, we use the
following conditional embeddings during training: (1) T5-
XXL [56] text embeddings, (2) CLIP L/14 text embeddings
and (3) CLIP L/14 image embeddings. We pre-compute
these embeddings for the whole dataset since computing
them online is very expensive. Similar to prior work [27,
59, 63], we add the projected conditional embeddings to the
time embedding and additionally perform cross attention at
multiple resolutions of the denoising model. We use random
dropout [74] on each of these embeddings independently
during training. When an embedding is dropped, we zero
out the whole embedding tensor. When all three embeddings
are dropped, it corresponds to unconditional training, which
is useful for performing classifier-free guidance [28]. We
visualize the input conditioning scheme in Figure 5.

Our complete pipeline consists of a cascade of diffusion
models. Specifically, we have a base model that can gen-
erate images of 64×64 resolution and two super-resolution
diffusion models that can progressively upsample images to
256×256 and 1024×1024 resolutions, respectively (see Fig-
ure 5). To train the super-resolution models, we condition on
the ground-truth low-resolution inputs that are corrupted by
random degradation [81]. Adding degradation during train-
ing allows the models to better generalize to remove artifacts
that can exist in the outputs generated by our base model.
For the base model, we use a modified version of the U-net
architecture proposed in Dhariwal et al. [13], while for super-
resolution models, we use a modified version of the Efficient
U-net architecture proposed in Saharia et al. [63]. More
details on the architectures can be found in Appendix A.

4.3. Paint-with-words

We propose a training-free method, named paint-with-
words, that enables users to specify the spatial locations of
objects. As shown in Figure 6, users can select an arbi-
trary phrase from the text prompt and doodle on a canvas
to create a binary mask corresponding to that phrase. The
masks are input to all cross-attention layers and are bilinearly
downsampled to match the resolution of each layer. We use
those masks to create an input attention matrix A ∈ RNi×Nt

where Ni and Nt are the number of image and text tokens,
respectively. Each column in A is generated by flattening
the mask corresponding to the phrase that contains the text
token of that column. The column is set to zero if the corre-

Flatten

V K Q 

A rabbit mage standing on clouds 

Image Embedding

Softmax

Output

Attention Matrix

Text Embedding

Figure 6. Illustration of the proposed paint-with-words method. The
user can control the location of objects by selecting phrases (here
“rabbit mage” and “clouds”), and painting them on the canvas. The
user-specified masks increase the value of corresponding entries of
the attention matrix in the cross-attention layers.

sponding text token is not contained in any phrases selected
by the user. We add the input attention matrix to the origi-
nal attention matrix in the cross-attention layer, which now
computes the output as softmax

(
QKT+wA√

dk

)
V , where Q is

query embeddings from image tokens, K and V are key and
value embeddings from text tokens, dk is the dimensional-
ity of Q and K, and w is a scalar weight that controls the
strength of user input attention. Intuitively, when the user
paints a phrase on a region, image tokens in that region are
encouraged to attend more to the text tokens contained in
that phrase. As a result, the semantic concept corresponding
to that phrase is more likely to appear in the specified area.

We find it beneficial to use a larger weight at higher noise
levels and to make the influence of A irrelevant to the scale
of Q and K, which corresponds to a schedule that works
well empirically:

w = w′ · log(1 + σ) ·max(QKT ),

where w′ is a scalar specified by the user.

5. Experiments
First, we discuss optimization, dataset, and evaluation.

We then show improved quantitative results compared to
previous methods in Sec. 5.1. Then, we perform two sets of
ablation studies as well as study the effect of increasing the
number of experts over standard image quality metrics. In
Sec 5.2, we evaluate image generation performance based
on CLIP and/or T5 text embeddings, where we show that
having both embeddings lead to the best image generation
quality. Finally, we discuss two novel applications that are
enabled by eDiff-I. In Sec 5.3, we illustrate style transfer
applications that are enabled by CLIP image embeddings,
and in Sec 5.4, we present image generation results with the
introduced paint-with-words method.
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Figure 7. 2-Expert-Ensemble vs Baseline. We compare the FID-CLIP score trade-off curves between our 2-Expert-Ensemble model with
our baseline model trained without any denoising expert. We sample 5K captions from each benchmark dataset. To make a fair comparison,
we compare the baseline model trained for 800K iterations with our 2-Expert-Ensemble model trained for 600K iterations, as both models
see the same number of training samples at this point. We show the results on the COCO dataset on the left panel and the results on the
visual genome dataset on the right panel. In general, having a lower FID score and a higher CLIP score is more desirable. We observe that
our ensemble model consistently outperforms the baseline model on the entire FID-CLIP score trade-off curve.
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Figure 8. Effect of conditional embeddings. We plot the FID-CLIP score trade-off curves on the samples generated by our approach
using (a) T5 + CLIP encoders, (b) T5 encoder only, and (c) CLIP text encoder only. On the COCO dataset, using T5 and CLIP encoders in
isolation gives a similar performance, while using CLIP+T5 gives the best results. On the visual genome dataset, using the T5 encoder
in isolation gives better performance than using the CLIP text encoder. This is because the visual genome dataset contains longer and
more descriptive captions than the COCO dataset, and the use of a more powerful language model such as T5 becomes more beneficial.
Nevertheless, using T5+CLIP performs the best even in this dataset with our model.

Optimization Both the base and super-resolution diffu-
sion models are trained using the AdamW [45] optimizer
with a learning rate of 0.0001, weight decay of 0.01, and a
batch size of 2048. The base model was trained using 256
NVIDIA A100 GPUs, while the two super-resolution mod-
els were trained with 128 NVIDIA A100 GPUs each. Our
implementation is based on the Imaginaire library [44] writ-
ten in PyTorch [54]. More details on other hyperparameters
settings are presented in Appendix B.

Datasets We use a collection of public and proprietary
datasets to train our model. To ensure high-quality training
data, we apply heavy filtering using a pretrained CLIP model
to measure the image-text alignment score as well as an
aesthetic scorer to rank the image quality. We remove image-

text pairs that fail to meet a preset CLIP score threshold and
a preset aesthetic score. The final dataset to train our model
contains about one billion text-image pairs. All the images
have the shortest side greater than 64 pixels. We use all
of them to train our base model. We only use images with
the shortest side greater than 256 and 1024 pixels to train
our SR256 and SR1024 models, respectively. For training
our base and SR256 models, we perform resize-central crop.
Images are first resized so that the shortest side has the
same number of pixels as the input image side. For training
the SR1024 model, we randomly crop 256×256 regions
during training and apply it on 1024×1024 resolution during
inference. We use COCO and Visual Genome datasets for
evaluation, which are excluded from our training datasets for
measuring zero-shot text-to-image generation performance.
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(a) Baseline (no expert) (b) eDiff-I

An origami of a monkey dressed as a monk riding a bike on a mountain.

A 4k dslr photo of two teddy bears wearing a sports jersey with the text “eDiffi” written on it. They are on a soccer field.

Figure 9. 2-Expert-Ensemble vs Baseline.. We compare the image synthesis capability of our model (two rightmost panels) with our
baseline (two left panels). We find that the baseline model does not generate mountains in one of the examples on the top row and produces
incorrect text in the bottom row. Our 2-expert-ensemble improves the generation capability in both these cases.

Evaluation We use MS-COCO [42] dataset for most of
the evaluation. Consistent with prior work [57, 63], we
report zero-shot FID-30K [24] in which 30K captions are
drawn randomly from the COCO validation set. We use the
captions as inputs for synthesizing images. We compute
the FID between these generated samples and the reference
30K ground truth images. We also report the CLIP score,
which measures the average similarity between the generated
samples and the corresponding input captions using features
extracted from a pre-trained CLIP model. In addition to the
MS-COCO validation set, we also report the CLIP and FID
scores on Visual Genome dataset [40], which is a challenging
dataset containing images and paired long captions.

5.1. Main Results

First, we study the effectiveness of our ensemble model
by plotting the FID-CLIP score trade-off curve and com-
paring it with our baseline model, which does not use our
proposed ensemble-of-expert-denoisers scheme but shares
all the remaining design choices. The trade-off curves are
generated by performing a sweep over classifier-free guid-
ance values in the range {0, 0.5, 1.0, . . . 9.5, 10.0}. In this
experiment, we train an ensemble of four expert models by
splitting the baseline model trained to 500K iterations and

Table 1. Zero-shot FID comparison with recent state-of-the-art
methods on the COCO 2014 validation dataset. We include the text
encoder size in our model parameter size calculation.

Model # of Zero-shot
params FID ↓

GLIDE [51] 5B 12.24
Make-A-Scene [17] 4B 11.84
DALL·E 2 [57] 6.5B 10.39
Stable Diffusion [59] 1.4B 8.59
Imagen [63] 7.9B 7.27
Parti [86] 20B 7.23
eDiff-I-Config-A 6.8B 7.35
eDiff-I-Config-B 7.1B 7.26
eDiff-I-Config-C 8.1B 7.11
eDiff-I-Config-D 9.1B 6.95

training each child model for 50K iterations. We further
split each of these child models at 550K iterations and train
the resulting four models for another 50K steps. This re-
sults in four expert models, E2

0 , E2
1 , E2

3 , and E2
4 , trained for

600K steps. To make a fair comparison, we evaluate the en-
semble model against our baseline model that is trained for
800K steps, as this would correspond to both models seeing
the same number of training samples. As shown in Figure 7,
our ensemble model outperforms the baseline model by a
significant margin on the entire trade-off curve.
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Next, we report the FID-30K results of eDiff-I com-
puted on 256×256 resolution images on the MS-COCO
dataset and compared it with the state-of-the-art methods in
Table 1. We experiment with the following model settings:

• eDiff-I-Config-A Our baseline model for the
base model generates images at 64×64 resolution. The
outputs are upsampled with our baseline SR256 model.

• eDiff-I-Config-B The same base model as in
eDiff-I-Config-A. The ensemble SR256 model
consists of two experts: E1

0 and E1
1 .

• eDiff-I-Config-C Our 2-expert ensemble base
model generates images at 64×64 resolution. This
ensemble model consists of an expert model trained
at leaf nodes E9

511 and a complement model trained
on all other noise levels except E9

511. The outputs
are upsampled with our ensemble SR256 model as in
eDiff-I-Config-B.

• eDiff-I-Config-D Our 3-expert ensemble base
model generates images at 64×64 resolution. The 3-
expert ensemble model consists of E9

511 model (high
noise regime model), E3

0 (low noise regime model), and
an expert denoiser model covering the noise levels in-
between. The outputs are upsampled with our ensemble
SR256 model as in eDiff-I-Config-B.

We observe that our eDiff-I-Config-A model out-
performs GLIDE [51], DALL·E 2 [57], Make-a-Scene [17],
and Stable Diffusion [59], and achieves FID slightly
higher than that of Imagen [63] and Parti [86]. By
applying the proposed ensemble scheme to the SR256
model (eDiff-I-Config-B), we achieve an FID score
of 7.26, which is slightly better than Imagen. As
we apply the proposed 2-expert ensemble scheme to
build eDiff-I-Config-C, which has roughly the same
model size as Imagen, we outperform both Imagen
and Parti by an FID score of 0.16 and 0.12, respec-
tively. Our eDiff-I-Config-D model achieves the
best FID of 7.04. In Figure 9, we qualitatively com-
pare the results of eDiff-I-Config-A with those of
eDiff-I-Config-C. We observe that our ensemble of
expert denoisers generates improved results compared with
the baseline.

We now report qualitative comparison results using our
best eDiff-I configuration with two publicly available
text-to-image generative models — Stable Diffusion [59]
and DALL·E 2 [57] in Figures 10, 11, and 12. In the pres-
ence of multiple entities (Figure 10), Stable Diffusion and
DALL·E 2 tend to mix the attributes from different entities
or ignore some of the attributes, while eDiff-I can ac-
curately model attributes from all entities. In generating
texts (Figure 11), both Stable Diffusion and DALL·E 2 of-
ten produce misspellings or ignore words, while eDiff-I

correctly generates the texts. Even in the case of long descrip-
tions, eDiff-I can handle long-range dependencies better
and perform better than DALL·E 2 and Stable Diffusion.

In Figure 14, we show that eDiff-I can generate im-
ages with a variety of styles by using the proper text prompts.
Our model can also generate many variations for a given text
prompt, as shown in Figure 15.

In Figure 13, we conduct an experiment to illustrate that
the proposed ensemble-of-expert-denoisers scheme helps
scale the model size without incurring additional computa-
tion in the inference time.

5.2. CLIP Text and T5 Text

As explained in Sec. 4.2, we use both CLIP text embed-
dings and T5 text embeddings to train our models. Since
we perform random dropout independently on the individual
embeddings during training, the model has the capability to
generate images when each of the embeddings is used in iso-
lation. In Figure 18, we examine the effect of the individual
text embeddings in our model. We observe that images gen-
erated using the CLIP text embeddings alone typically have
the correct foreground object, but lack in terms of composi-
tionality, counting, and generating text. On the other hand,
images generated by using only the T5 text embeddings ob-
tain better compositions but are inferior in generating the
foreground objects, such as the breeds of dogs. Using both
T5 and CLIP text embeddings, we get the best of both worlds,
where our model can use the provided attributes from each
of the text embeddings.

Next, we quantitatively evaluate the effect of individual
embeddings by plotting the CLIP-FID trade-off curve on MS-
COCO and Visual Genome datasets in Figure 8. We observe
that, on the MS-COCO dataset, using CLIP and T5 embed-
dings in isolation results in a similar performance, while
using CLIP+T5 embeddings leads to much better trade-off
curves. On the visual genome dataset, using T5 embeddings
in isolation leads to better performance than using CLIP
text embeddings. A closer look at the dataset statistics re-
veals that the average number of words in each caption of
the MS-COCO dataset is 10.62, while it is 61.92 for Visual
Genome. So, when the text is more descriptive, the use of T5
embeddings performs better than the CLIP text embeddings.
Again, the best performance is obtained by using CLIP+T5
embeddings.

5.3. Style transfer

In addition to the T5 and CLIP text embeddings, our
model is also conditioned on CLIP image embeddings during
training. We find that the use of CLIP image embeddings
gives us the ability to do style transfer during synthesis. In
Figure 16, we show some of our style transfer results. From
a given reference image, we first obtain its CLIP image
embedding. We then sample outputs conditioned on both
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(a) Stable Diffusion (b) DALL·E 2 (c) Ours

A photo of two cute
teddy bears sitting
on top of a grizzly
bear in a beautiful
forest. Highly de-
tailed fantasy art, 4k,
artstation

There are two Chi-
nese teapots on a ta-
ble. One pot has a
painting of a dragon,
while the other pot
has a painting of a
panda.

A photo of two squir-
rel warriors dressed
as knights fighting
on a battlefield. The
squirrel on the left
holds a stick, while
the squirrel on the
right holds a long
sword. Gray clouds.

A photo of a dog
wearing a blue shirt
and a cat wearing a
red shirt sitting in a
park, photorealistic
dslr.

Figure 10. Comparison between samples generated by our approach with DALL·E 2 and Stable Diffusion. Category: multiple entities. In
this set of results, we generate images with multiple entities. Stable Diffusion and DALL·E 2 tend to mix the attributes corresponding to
different entities. For instance, in the last row, the dog and the cat both wear red shirts in DALL·E 2 outputs, while Stable Diffusion does not
even generate a cat. Our model, on the other hand, produces all entities consistent with the captions. Note that we generated multiple outputs
from each method and picked the best one to include in the figure.

11



(a) Stable Diffusion (b) DALL·E 2 (c) Ours

A photo of two mon-
keys sitting on a tree.
They are holding a
wooden board that
says “Best friends”,
4K dslr.

A photo of a golden
retriever puppy
wearing a green
shirt. The shirt
has text that says

“NVIDIA rocks”.
Background office.
4k dslr.

An ice sculpture
is made with the
text “Happy Holi-
days”. Christmas
decorations in the
background. Dslr
photo.

A dslr photo of a
colorful Graffiti on
a wall with the text

“Peace love”. There is
a painting of a bull-
dog with sunglasses
next to it.

Figure 11. Comparison between samples generated by our approach with DALL·E 2 and Stable Diffusion. Category: text. We observe that
both DALL·E 2 and Stable Diffusion fail at generating text. These models either produce misspellings or do not even generate text. For
example, as spelling “NVIDIA rocks”, Stable Diffusion failed to generate any text, while DALL·E 2 only generated “NIDCKA VIDA”.
Only our model succeeds in generating the target. Overall, we observe that our model can generate English text on a wide range of samples.
Note that we generated multiple outputs from each method and picked the best one to include in the figure.
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(a) Stable Diffusion (b) DALL·E 2 (c) Ours

A 4K dslr photo of a
hedgehog sitting in
a small boat in the
middle of a pond. It
is wearing a Hawai-
ian shirt and a straw
hat. It is reading
a book. There are
a few leaves in the
background.

A fantasy landscape
on an alien planet
in which there are
many buildings.
There is a beautiful
bridge with a pond
in the center. There
is one large moon in
the sky. The sky is
orange. Digital art,
artstation.

A close-up 4k dslr
photo of a cat rid-
ing a scooter. It is
wearing a plain shirt
and has a bandana
around its neck. It
is wearing a scooter
helmet. There are
palm trees in the
background.

A photo of a plate
at a restaurant table
with spaghetti and
red sauce. There is
sushi on top of the
spaghetti. The dish
is garnished with
mint leaves. On the
side, there is a glass
with a purple drink,
photorealistic, dslr.

Figure 12. Comparison between samples generated by our approach with DALL·E 2 and Stable Diffusion. Category: long detailed captions.
On long descriptions, Stable Diffusion and DALL·E 2 sometimes fail to create images with all attributes mentioned in the caption. For
instance, in the last example, neither method generates sushi on top of pasta. Our method can handle long detailed descriptions better than
other methods. Note that we generated multiple outputs from each method and picked the best one to include in the figure.
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Figure 13. Model inference time by base model capacity. In this
figure, we compare the network feed-forward evaluation time for
two schemes of increasing network capacity in diffusion models.
The first scheme is through increasing the depth of the model.
We use the same base model architecture but increase the number
of residual blocks there. We perform feed-forward evaluations
100 times on an NVIDIA A100 GPU and report the average feed-
forward time in the curve. As expected, the feed-forward evaluation
time increases with the network capacity. The second scheme is
our proposed scheme, where we simply use different numbers of
denoising experts for different noise levels, and hence the per-
network feed-forward evaluation time remains constant.

the reference CLIP image embedding and the corresponding
input text. We find that when CLIP image embeddings are
not used, images are obtained in the natural style. On the
other hand, when the CLIP image embeddings are active,
images are generated in accordance with the style given by
the reference image.

5.4. Paint-with-words

We show some results produced by our “paint-with-
words” approach in Fig. 17. Although the doodles are very
coarse and do not contain the exact shape of objects, our
method is still able to synthesize high-quality images that
have the same rough layout. In most scenarios, this is more
convenient than segmentation-to-image methods [30, 32, 53],
which are likely to fail when user-drawn shapes are different
from shapes of real objects. Compared with text-conditioned
inpainting methods [3, 6, 51] that apply a single concept to
an image region, “paint-with-words” can generate the whole
image containing multiple concepts in a single pass from
scratch, without the need to start from an input image.

6. Conclusions
In this paper, we proposed eDiff-I, a state-of-the-art

text-to-image diffusion model that consists of a base diffu-
sion model and two super-resolution modules, producing
1024 × 1024 high-definition outputs. eDiff-I utilizes
an ensemble of expert denoisers to achieve superior perfor-
mance compared to previous work. We found that the gener-
ation process in text-to-image diffusion models qualitatively

changes throughout synthesis: Initially, the model focuses
on generating globally coherent content aligned with the text
prompt, while later in the process, the model largely ignores
the text conditioning and its primary goal is to produce vi-
sually high-quality outputs. Our different expert denoiser
networks allow us to specialize the model for different be-
haviors during different intervals of the iterative synthesis
process. Moreover, we showed that by conditioning on both
T5 text, CLIP text, and CLIP image embeddings, eDiff-I
not only enjoys improved performance but also enables rich
controllability. In particular, the T5 and CLIP text embed-
dings capture complementary aspects of the generated im-
ages, and the CLIP image embedding further can be used
for stylization according to reference images. Finally, we
demonstrated expressive spatial control using eDiff-I’s
“paint-with-words” capability.

Societal impact We hope that eDiff-I can serve as a
powerful tool for digital artists for content creation and to ex-
press their creativity freely. Modern text-to-image diffusion
models like ours have the potential to democratize artistic
expression by offering the user the ability to produce detailed
and high-quality imagery without the need for specialized
skills. We envision that eDiff-I can benefit designers,
photographers, and content creators.

However, state-of-the-art text-to-image generative models
like eDiff-I need to be applied with an abundance of cau-
tion. For instance, they can also be used for advanced photo
manipulation for malicious purposes or to create deceptive
or harmful content. In fact, the recent progress of generative
models and AI-driven image editing has profound implica-
tions for image authenticity and beyond. Such challenges
can potentially be tackled, for instance, by methods that auto-
matically validate real images and detect manipulated or fake
content. Moreover, the extremely large, mostly unfiltered
training data sets of current large-scale text-to-image gener-
ative models include biases that are captured by the model
and also reflected in the generated data. It is, therefore, im-
portant to be aware of such biases in the underlying data and
counteract them, for example, by actively collecting more
representative data or by using bias correction methods.
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Real Rembrandt Pencil sketch

Vincent van Gogh Egyptian tomb hieroglyphics Abstract cubism

Pixel art Hokusai Madhubani

Figure 14. Samples generated by our approach for the caption “A {X} photo / painting of a penguin working as a fruit vendor in a tropical
village”, where X denotes one of the nine styles listed above. Our model can generate images from a wide range of artistic styles while being
consistent with the input text description.
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A photo of a dog

wearing a blue shirt

and a cat wearing a

red shirt sitting in a

park, photorealistic

dslr.

A photo of a hedge-

hog sitting in a small

boat in the middle of

a pond. It is wear-

ing a Hawaiian shirt

and a straw hat. It is

reading a book.

An ice sculpture

is made with text

“Happy Holidays”.

Christmas dec-

orations in the

background. Dslr

photo.

An oil painting of

raccoons dressed as

three musketeers in

an old French town.

A photo of a lemur

wearing a red ma-

gician hat and a

blue coat in a gar-

den. The lemur is

performing a magic

trick with cards.

Figure 15. Image variations generated by our method. For each text prompt, we show four random sample variations generated by our
method. We find that our model can generate diverse samples for each prompt. In the first row, our model can generate different breeds of
dogs and cats, whereas, in the third row, we see that our model can generate the text “Happy Holidays” with different styles.

16



Reference image With CLIP image conditioning Without CLIP image conditioning

A photo of two pan-
das walking on a
road.

A detailed oil paint-
ing of a beautiful
rabbit queen wear-
ing a royal gown in a
palace. She is look-
ing outside the win-
dow, artistic.

A dslr photo of a
dog playing trumpet
from the top of a
mountain.

A photo of a teddy
bear wearing a
casual plain white
shirt surfing in the
ocean.

Figure 16. Style transfer with CLIP image conditioning. We use CLIP image embeddings extracted from the reference image shown in the
first column to condition our generation. Column 2 shows the generations when CLIP image conditioning is active, while column 3 shows
results when CLIP image conditioning is inactive. Our model can effectively synthesize samples consistent with the reference image style.
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A dramatic oil painting of a road from a magical portal to an
abandoned city with purple trees and grass in a starry night.

A Halloween scene of an evil pumpkin. A large red moon in
the sky. Bats are flying and zombies are walking out of tombs.

Highly detailed fantasy art.

A monster and a teddy bear playing dungeons and dragons
around a table in a dark cellar. High quality fantasy art.

A highly detailed digital art of a rabbit mage standing on
clouds casting a fire ball.

A red Ferrari car driving on a gravel road in a forest with
rainbow beams in the distance.

A squirrel with red boxing gloves and a squirrel with blue
boxing gloves fighting in a bar.

Figure 17. Samples generated by paint-with-words. Our method allows users to control the location of objects mentioned in the text prompt
by selecting phrases and scribbling them on the image. Each phrase can contain multiple words. We show two examples in each row. Each
example has the text prompt on the bottom, the scribbles on the left, and the output image on the right.
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(a) CLIP only (b) T5 only (c) CLIP + T5

A photo of a raccoon
wearing a brown
sports jacket and a
hat. He is holding a
whip in his hand.

A photo of a red
parrot, a blue par-
rot and a green par-
rot singing at a con-
cert in front of a mi-
crophone. Colorful
lights in the back-
ground.

A photo of a cute
corgi wearing a
beret holding a sign
that says “Diffusion
Models”. There is
Eiffel tower in the
background.

A photo of a lion
and a panda compet-
ing in the Olympics
swimming event.

Figure 18. Comparison between images generated by our approach using (a) CLIP text encoder alone (our CLIP-text-only setting), (b) T5
text encoder alone (our T5-text-only setting), and (c) Both CLIP and T5 text encoders (our default setting). While images generated in the
CLIP-text-only setting often contain correct foreground objects, they tend to miss fine-grain details, such as missing the brown jacket and hat
in row 1 and the green parrot and colorful lighting in the background in row 2. Images generated in the T5-text-only setting are of higher
quality, but they sometimes contain incorrect objects, such as incorrect dog breed in row 3 and tiger rendering in row 4. Our default setting
that combines the strength of the CLIP text encoder and T5 text encoder produces images that better match the input text descriptions and
contain the least amount of artifacts.
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A. Network Architecture
For our diffusion models, we modify the U-net archi-

tecture proposed in Dhariwal et al. [13] with the following
changes:

1. Global conditioning: We add the projected pooled CLIP
text embedding and CLIP image embedding along with
the time step embedding in our model. Different from
Saharia et al. [63], we do not use pooled T5 embed-
dings. CLIP text embeddings are trained to be well
aligned with images, and hence, using them as global
conditioning embeddings are more informative than
using T5.

2. Attention blocks: After every self-attention block in the
U-net model of Dhariwal et al. [13], we add a cross-
attention block to perform cross-attention between im-
age embeddings and the conditioning embeddings. The
keys in the cross-attention layers are the concatenation
of pre-pooled CLIP text embeddings (77 tokens), T5
embeddings (113 tokens), and pooled CLIP image em-
bedding (1 token). In addition to these, we also add a
learnable null embedding, which the model can attend
to when it does not need to use any of the conditioning
embeddings.

In addition, to make the super-resolution models more
efficient during training and inference, we use the block struc-
ture of Efficient U-net architecture proposed in Saharia et
al. [63]. Following the prior works [57, 63], we train the
SR1024 model using random patches of size 256×256 dur-
ing training and apply it on 1024×1024 resolution during
inference. We also remove the self-attention layers and only
have the cross-attention layers in this network, as computing
self-attention during inference is very expensive. The U-net
configurations we use for all our models are provided in
Tables 2, 3, and 4 respectively.

Table 2. Base model architecture

Channel mult [1, 2, 4, 4]
Dropout 0

Number of channels 256
Number of residual blocks 3
Self attention resolutions [32, 16, 8]

Cross attention resolutions [32, 16, 8]
Use scale shift norm True

Table 3. SR256 model architecture

Channel multiplier [1, 2, 4, 8]
Block multiplier [1, 2, 4, 4]

Dropout 0
Number of channels 128

Number of res blocks 2
Self attention resolutions [32]

Cross attention resolutions [32]
Use scale shift norm True

Table 4. SR1024 model architecture

Patch size 256× 256
Channel multiplier [1, 2, 4, 4]
Block multiplier [1, 2, 4, 4]

Dropout 0
Number of channels 128

Number of res blocks 2
Cross attention resolutions [32]

Use scale shift norm True
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B. Ensemble training schedule
As discussed in Sec 4.1, we use a binary-tree-based

branching strategy for training our ensemble model. In Ta-
bles 5 and 6, we list the exact training schedule we use to
train our models. Each entry in the configuration is a tuple
containing Elevel

id in the binary tree. This corresponds to the
training out model with the noise distribution plevel id

interval id(σ).
Models denoted as MC are the intermediate noise models.
For these models, the configuration with a negative sign
indicates all noise levels other than the one indicated. For
instance, −(9, 511) denotes all noise levels other than the
one included in p9511(σ). That is the noise is sampled from
the complementary distribution p(σ)\p9

511(σ).

Table 5. Training schedule for the base model. Each configura-
tion is a tuple of (level id, interval id) in the binary tree. This
configuration denotes the model trained with the noise distribution
plevel id

interval id(σ). The configuration denoted with a negative sign stands
for complementary distribution i.e., p(σ)\plevel id

interval id(σ). The third
column denotes the model from which the current model is initial-
ized. The fourth column denotes the number of iterations we train
our model.

Model id Config Initialized from # iterations

M(0, 0) (0, 0) − 500K
M(1, 0) (1, 0) M(0, 0) 50K
M(1, 1) (1, 1) M(0, 0) 50K
M(2, 0) (2, 0) M(1, 0) 120K
M(2, 1) (2, 1) M(1, 0) 50K
M(2, 2) (2, 2) M(1, 1) 50K
M(2, 3) (2, 3) M(1, 1) 130K
M(3, 0) (3, 0) M(2, 0) 160K
M(3, 7) (3, 7) M(3, 0) 40K
M(4, 0) (4, 0) M(3, 0) 110K
M(4, 15) (4, 15) M(3, 7) 190K
M(5, 31) (5, 31) M(4, 15) 100K
M(9, 511) (9, 511) M(5, 31) 50K

MC(9, 511) -(9, 511) Base model 50K
at 1.45M

MC
2 (9, 511) -(9, 511) Base model 50K

-(4, 0) at 1.45M

Table 6. Training schedule for the super-resolution models. Each
configuration is a tuple of (level id, interval id) in the binary tree.
The third column denotes the model from which the current model
is initialized. The fourth column denotes the number of iterations
we train our model.

Model id Config Initialized from # iterations

M(0, 0) (0, 0) − 2M
M(1, 0) (1, 0) M(0, 0) 300K
M(1, 1) (1, 1) M(0, 0) 300K

B.1. Hyper-parameters

The hyperparameters we use for training all our models
are provided in Table 7.

Table 7. Hyperparameters

Optimizer AdamW
Learning rate 0.0001
Weight decay 0.01
Betas (0.9, 0.999)
EMA 0.9999
CLIP text embedding dropout rate 0.2
T5 text embedding dropout rate 0.25
CLIP image embedding dropout rate 0.9
Gradient checkpointing Enabled
Number of iterations for base model 1.9M
Number of iterations for SR256 model 2M
Number of iterations for SR1024 1.7M
Sampler for base model DEIS [89], 3kutta

Order 6, 25 steps
Sampler for super-resolution models DEIS, 3kutta

Order 3, 10 steps
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