
Eurographics Symposium on Rendering (DL-only Track) (2021)
A. Bousseau and M. McGuire (Editors)

Appearance-Driven Automatic 3D Model Simplification

J. Hasselgren1, J. Munkberg1, J. Lehtinen1,2, M. Aittala1 and S. Laine1

1NVIDIA Research
2Aalto university

Figure 1: We automatically approximate shape and appearance of detailed 3D scenes. Here, we approximate foliage with low-poly proxy
geometry and textures, instance it 3000 times, and render the scene in a standalone path tracer with new lighting conditions. Compared to
the reference, we accurately capture the appearance of the scene at just a fraction (0.4%) of the triangle count. The geometry is illustrated
in the insets. The assets are from the Moana Island Scene, a publicly available data set courtesy of Walt Disney Animation Studios.

Abstract
We present a suite of techniques for jointly optimizing triangle meshes and shading models to match the appearance of reference
scenes. This capability has a number of uses, including appearance-preserving simplification of extremely complex assets,
conversion between rendering systems, and even conversion between geometric scene representations.
We follow and extend the classic analysis-by-synthesis family of techniques: enabled by a highly efficient differentiable renderer
and modern nonlinear optimization algorithms, our results are driven to minimize the image-space difference to the target
scene when rendered in similar viewing and lighting conditions. As the only signals driving the optimization are differences in
rendered images, the approach is highly general and versatile: it easily supports many different forward rendering models such
as normal mapping, spatially-varying BRDFs, displacement mapping, etc. Supervision through images only is also key to the
ability to easily convert between rendering systems and scene representations.
We output triangle meshes with textured materials to ensure that the models render efficiently on modern graphics hardware
and benefit from, e.g., hardware-accelerated rasterization, ray tracing, and filtered texture lookups. Our system is integrated in
a small Python code base, and can be applied at high resolutions and on large models. We describe several use cases, including
mesh decimation, level of detail generation, seamless mesh filtering and approximations of aggregate geometry.

CCS Concepts
• Computing methodologies → Mesh geometry models; Reflectance modeling;

1. Introduction

Synthesizing images of objects with complex shapes and appear-
ances is a central goal in computer graphics. The problem can be
broken down into choosing suitable representations for shape and

appearance, modeling the scene according to the chosen represen-
tations, and finally, rendering it efficiently.

Creating a shape and appearance model for a particular 3D scene
is inherently an inverse problem: we seek a representation that will,

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

J. Hasselgren, J. Munkberg, J. Lehtinen, M. Aittala and S. Laine / Appearance-Driven Automatic 3D Model Simplification

once fed through the renderer, result in an image that looks the way
we want. Yet, most modeling tools turn the problem around: instead
of providing the user with means to specify the image they want,
they provide tools for editing the scene representation, leaving the
modeler to iteratively proceed toward their goal.

The goal in this work is to automatically find shape and appear-
ance representations that match, when rendered, a reference scene
provided by the user. This approach is often called inverse render-
ing or analysis-by-synthesis. In contrast to algorithms like multi-
view stereo that must make do with a small number of reference
images, we focus on applications where it is possible to program-
matically synthesize reference views of the target scene under ar-
bitrary, controllable viewing and lighting conditions. Within this
scope, we present inverse rendering techniques for

• Geometric simplification (LOD). Optimizing for the shape of a
lower-resolution mesh to combat geometric aliasing and increase
rendering efficiency.
• Joint shape-appearance simplification. Optimizing the shape

and surface appearance model (mesh geometry, displacement
maps, normal maps, spatially-varying BRDFs) to mimic the ap-
pearance of a more complex asset.
• Simplification of aggregate geometry. Dramatically simplify-

ing complex foliage assets with little impact in visual quality.
• Animation. Joint optimization of shape and skinning weights on

reduced geometry to match a target animation.
• Conversion between rendering systems. Optimizing the scene

representation to match images rendered by a different system.
• Conversion between shape representations. Finding a mesh

geometry and associated appearance model that captures the ap-
pearance of objects given by other shape representations, such as
signed distance fields (SDF).

These kind of goals have been previously pursued with special-
ized algorithms (Section 2) that typically focus on a single task, and
consider only specific parts of the object representation. Since our
approach is based on inverse rendering and nonlinear optimization
it easily generalizes over all the different regimes while allowing
joint optimization of all aspects of the representation that affect the
final appearance.

In all our applications, the search for the shape and appearance
is driven by image-space error. This, combined with performing
shape and appearance optimization together, has the significant
benefit that the mechanisms of the forward rendering model can
each specialize for the effects they capture best, “negotiating” how
to achieve the desired outcome together. As an example, this leads
to a natural division of labor between the geometry (mesh) and a
normal map: geometric detail is allowed to move between the rep-
resentations by, e.g., locally smoothing a mesh and baking geomet-
ric detail into the normal map or other parameters of a physically
based shading model [Kar13]. Our source code is publicly available
at https://github.com/NVlabs/nvdiffmodeling.

2. Previous Work

Mesh decimation For a detailed overview of this mature research
topic, we refer the reader to the book by Luebke et al. [LWC∗02].
Commonly used algorithms include vertex decimation [Sch97],

vertex clustering [LT97] and edge contraction [GH97]. The error
metric is typically geometry based. A notable exception is view-
dependent simplification [LE97] which optimizes for silhouette
quality.

Lindstrom and Turk present a framework for image-driven sim-
plification [LT00]. They use rendered images to decide which por-
tions of a mesh to simplify. Please refer to Corsini et al. [CLL∗13]
for a survey of perceptual metrics for triangle meshes. Similarly,
our objective function is based on visual differences, but we lever-
age gradient-based optimization through differentiable rendering.

Cohen et al. [CVM∗96] introduce simplification envelopes for
generating a hierarchy of LODs for polygonal meshes. They build
envelopes around the mesh to avoid self-intersections and can
guarantee a distance tolerance between the original and simplified
meshes. For our continuous level of detail application, we similarly
use a sequence of meshes to represent the LODs. In contrast, we
optimize for visual error in image space.

Cook et al. [CHPR07] introduce a decimation technique that
stochastically removes a subset of the geometric elements and alter
the remaining elements by, e.g., scale and contrast adjustments, in
order to preserve the overall appearance. This technique is partic-
ularly suited for unstructured objects such as foliage. We similarly
exploit the scene graph when approximating aggregate geometry,
but instead of using heuristics for preserving visual appearance, we
optimize for it directly.

Appearance prefiltering For a summary of surface appearance
prefiltering techniques, please refer to Bruneton et al. [BN12]. Lin-
ear texture prefiltering methods are incorrect when applied to spa-
tially varying BRDF (bidirectional reflectance distribution func-
tion) and surface normal maps. Common approaches instead filter
the normal distribution function (NDF) [Fou92, Tok05, HSRG07,
OB10], where the challenge is how to compactly represent the fil-
tered NDF. Common representations include Gaussians [Tok05]
with one or more lobes, moment statistics [OB10], and spherical
harmonics [HSRG07].

Further work has considered, e.g., displacement mapping, and
masking and shadowing effects [DHI∗13, WZYR19]. Loubet
and Neyret [LN17] prefilter meshes and materials by absorbing
fine details into a volumetric microflake representation. Zhao et
al. [ZWDR16] downsample volumetric materials by optimizing for
rendered similarity to the original.

Our work can be applied to prefiltering. In our experiments, we
restrict the shading model to one diffuse lobe and one specular
GGX lobe [WMLT07], and let optimization adjust the mesh shape
and the material parameters so that the rendered result matches a
highly supersampled reference. This model is indeed less expres-
sive than many of those in prefiltering literature, but has the bene-
fit that there is no change to a typical game engine or any runtime
overhead. The approach is flexible, as it treats any target surface and
material representation in a unified manner: only the final visual ap-
pearance is observed, and it does not matter what combination of,
e.g., mesh shape, displacement, normal, and material parameters
produced it.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

https://github.com/NVlabs/nvdiffmodeling

J. Hasselgren, J. Munkberg, J. Lehtinen, M. Aittala and S. Laine / Appearance-Driven Automatic 3D Model Simplification

Appearance and geometry capture Appearance capture can be
framed as seeking a digital asset (e.g., an SVBRDF map and a
mesh) whose renderings visually match some real-world object.
This is conceptually similar to our setup, with the exception that
our targets are other digital assets.

Much of the difficulty in appearance capture originates from the
desire to limit the acquisition effort for the user. Exhaustively mea-
suring real-world appearance under all lighting and view direc-
tions is prohibitively expensive for most purposes. When only a
sparse sampling is available, typical approaches employ multistage
processing involving, e.g., clustering [LKG∗03] or multi-view
stereo [NLGK18] to find a solution that reproduces the measure-
ments and generalizes well to unseen conditions. Many approaches
use special viewing configurations and lighting patterns [GTHD03,
GCP∗09] to recover more varied reflectance information in each
measurement. For recent surveys, see Dong [Don19], Guarnera et
al. [GGG∗16], and Weinmann and Klein [WK15].

We are free to render our targets in as many viewing and lighting
conditions as needed. This eliminates much of the complexity, and
allows us to directly end-to-end optimize over the material param-
eters and vertex positions using a visual similarity loss.

Many appearance capture methods can be viewed as using
simple differentiable renderers to match their predictions to the
observations. For example, Gao et al. [GLD∗19] and Guo et
al. [GSH∗20] optimize for SVBRDF maps that reproduce a hand-
ful of target photographs upon rendering. They assume planar ge-
ometry, and use neural network based regularization to encour-
age plausible generalization to unseen conditions. Zsolnai-Féher
et al. [ZFWW20] use neural nets to capture material parameters
from images. Sztrajman et al. [SKWW17] convert materials be-
tween different analytic BRDF representations by optimizing for
their rendered visual similarity. Similar to us, their target images
are renderings of the target asset. However, they do not consider
geometry as part of the optimization.

Scene acquisition with neural networks NeRF [MST∗20] rep-
resents the scene as a neural radiance field. The quality of the re-
constructed views are impressive, but not yet suitable for interac-
tive applications as the radiance field needs to be densely sampled
at inference time, and the generated radiance field is static. Sim-
ilar to our approach, they use many observations of the scene to
train the model. In contrast, we generate triangle meshes and ma-
terials, which render in real-time in a standard 3D engine. Thies
et al. [TZN19] achieve a similar goal by learning a latent texture
map and an associated image-space decoder CNN that allows high-
quality view interpolation on meshes reconstructed by multi-view
stereo in fixed lighting environments.

Kato et al. [HKH18] generate triangular meshes from a single
color image by starting from a sphere and optimizing for silhou-
ette loss, ignoring materials and fine detail such as normal maps.
Pixel2Mesh [WZL∗18] extend this idea by using a graph convolu-
tional neural network to represent the mesh, and a set of geometri-
cal losses to ensure that the mesh is well-formed, including a Lapla-
cian regularization term. BSP-Net [CTZ20] uses a different geo-
metrical representation based on binary space partitioning, which
leads improves quality when using low polygon meshes. Similar

to these approaches, our shape optimization is also based on de-
forming an existing triangular mesh, but we rely on multiple im-
age observations and use image loss, rather than geometric losses,
to allow higher-quality reconstruction that includes materials and
shading effects.

Differentiable rendering For an overview of current approaches,
please refer to Laine et al. [LHK∗20]. They also introduce a flexi-
ble set of differentiable rasterization primitives which can be used
together with PyTorch or TensorFlow to build custom differen-
tiable rendering pipelines. Several differentiable rendering pack-
ages [JSL∗19, VKP∗19, RRN∗20] provide more built-in function-
ality but are less customizable.

Chen et al. [CLG∗19, ZCL∗20] optimize over vertex positions,
colors, normals, light directions and texture coordinates through
a variety of lighting models, purely from 2D observations. We ex-
tend this approach to handle more complex shading models (GGX),
more complex geometry, normal maps, displacement maps, and
transparency, for higher visual quality. Additionally, we optimize
shape and appearance jointly instead of training in stages, and show
additional use cases including mesh filtering and animation. Chen
et al. focus primarily on predicting 3D objects from single images,
while we use multiple image observations to capture the shape and
appearance, which leads to higher-quality reconstructions.

Li et al. [LADL18] present a differentiable Monte Carlo ray
tracer, and Mitsuba 2 [NDVZJ19] implements a full differentiable
path tracer. In this paper, we use and extend the rasterization prim-
itives from Laine et al. [LHK∗20] for quicker iteration times and
ease of customization. Combining our approach with a differential
path tracer would enable additional applications, but at a signifi-
cantly higher computational cost. Given recent progress in differ-
entiable rendering performance [NDSRJ20], we hope to leverage a
differentible path tracer in future work.

3. Our Method

Our goal is to jointly optimize shape and material parameters to
match the visual appearance of images from a reference renderer.
We follow the common practice of representing the shape as a tri-
angle mesh and using a spatially varying BRDF for materials. This
ensures that our optimized representation renders directly in mod-
ern game engines and can readily exploit hardware-accelerated ras-
terization, ray tracing, and filtered texture-lookups.

Figure 2 outlines our method. The latent representation consists
of a triangle mesh and a set of textures describing spatially varying
material parameters from a physically based shading model Dur-
ing optimization, we render the latent representation using a differ-
entiable rendering pipeline: a sequence of mesh operations, a ras-
terizer, and a deferred shading stage. An image-space loss is then
computed between the resulting image and a target image produced
by a reference renderer under identical viewing and lighting condi-
tions. Because the rendering pipeline is fully differentiable, we can
compute the gradient of the loss with respect to parameters of the
latent representation, i.e., vertex positions and texture contents, and
consequently optimize these to improve the visual similarity.

We iterate over a large number of image pairs with randomized

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

J. Hasselgren, J. Munkberg, J. Lehtinen, M. Aittala and S. Laine / Appearance-Driven Automatic 3D Model Simplification

Latent representation

Mesh Material parameters

Differentiable rendering pipeline Image-domain loss

Construct tangent space

Animation and skinning

Displacement mapping

Differentiable rasterizer

Deferred shading

Reference modelReference renderer

Rasterizer

Path tracer

SDF renderer SDFVisual
similarity

Figure 2: An overview of our method. We render the latent representation (mesh and material parameters) in a differentiable rendering
pipeline: a sequence of mesh operations followed by rasterization and deferred shading. Similarly, a target image is generated by the
reference renderer under identical viewing and lighting conditions, and an image-domain loss is computed on the two images. During
optimization, we iterate over a large number of image pairs with random viewing and lighting conditions. Using back-propagation and
stochastic gradient descent, the latent representation is gradually morphed to produce images close to the reference.

camera and a single randomized point light, similar to a virtual
photo-goniometer. Using stochastic gradient descent, the latent rep-
resentation is gradually morphed to match the appearance of the
reference model.

More formally, let θ denote the parameters of our latent repre-
sentation (e.g., mesh vertex positions and spatially varying material
parameters). The rendered image Iθ(c, l) is a function of θ, camera,
c, and light, l. The reference render is another function Iref(c, l),
parameterized by the camera and light. Given an image space loss
function L, we minimize the empirical risk

argmin
θ

Ec,l
[
L
(
Iθ(c, l), Iref(c, l)

)]
(1)

using stochastic gradient descent based on gradients w.r.t. the la-
tent parameters, ∂L/∂θ, which are obtained through differentiable
rendering.

Apart from the ability to place the camera and light, we con-
sider the reference renderer as a black box. The only information
communicated between the reference renderer and our latent rep-
resentation are the target images that are used in the image-domain
loss. Note, in particular, that this means that the reference ren-
derer does not need to be differentiable, or even implemented in the
same framework. This allows us to convert models across render-
ers, and even between different geometrical representations—e.g.,
from signed distance fields (SDF) to triangle meshes.

Note that the choice of reference rendering algorithm depends
on the intended use of the final model. Our pipeline does not ren-
der shadows or other global effects, so if the reference renderings
feature no such effects either—as can usually be arranged—the op-
timization will converge on materials that are as close as possible
to the reference model. This is because both sides of the process
in Figure 2 agree upon which effects in the final image are due to
the model and which are due to the rendering algorithm. How the
model is ultimately used in production is an orthogonal question,
and at that point, shadows or path tracing can be enabled if desired.
Alternatively, if the references are rendered with, say, ambient oc-
clusion or path tracing enabled, the optimization process will bake
these into the material parameters so that rendering without these

effects produces a reasonable approximation. We demonstrate both
approaches later in Sections 4.4 and 4.5.

As often in nonlinear optimization, good initial guesses may
have a dramatic effect on the speed of convergence and eventual
quality of the result. When a high-resolution mesh of the target ob-
ject is available, we use off-the-shelf mesh decimation tools to pro-
duce the initial guess for the latent triangle mesh. In some cases,
e.g., when baking foliage as billboard clouds, we draw on prior
domain knowledge and explicitly specify a suitable initial mesh.
However, we find that starting from a tessellated sphere often yields
surprisingly good results. Similarly, if available, we may use texture
maps from the reference scene as an initial guess for material pa-
rameters. If unavailable, we start from randomly initialized texture
maps. We currently do not optimize the topology or texture co-
ordinates of the latent representation. Hence, we require the initial
mesh to have a reasonable level of tessellation and non-overlapping
texture parameterization.

Our rendering pipeline combines the differentiable rasterization
primitives by Laine et al. [LHK∗20], differentiable shading in Cuda
kernels, and mesh operations in PyTorch [PGC∗17]. To encourage
well-formed meshes, we include a Laplacian regularizer [Sor05]
in our objective function. Each component is further detailed in
Section 5 and the source code is provided for completeness. This
setup is flexible and allows for differentiable rendering at high res-
olutions and high polygon counts at interactive rates. Please refer
to Laine et al. for extensive performance comparisons of differen-
tiable renderers. We obtain initial results with reasonable quality
after a few seconds as shown in the plot below and in the accom-
panying video. For the final results, we run optimization at a res-
olution of 2048×2048 pixels, with a batch size of 8 for 10k steps,
where each item uses a random camera and light position. This
takes approximately 30 minutes on an NVIDIA A6000 GPU.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

J. Hasselgren, J. Munkberg, J. Lehtinen, M. Aittala and S. Laine / Appearance-Driven Automatic 3D Model Simplification

Initial guess (3k tris) Optimized positions & normals Our (3k tris) Ref (735k tris)
PSNR: 24.96 dB, FLIP: 0.051

Initial guess (9k tris) Optimized positions & normals Our (9k tris) Simplygon (9k tris)
PSNR: 28.30 dB, FLIP: 0.032 PSNR: 27.07 dB, FLIP: 0.043

Figure 3: Top: Starting from a sphere, we jointly optimize vertex positions and tangent space normal maps based on image observations
of a reference mesh. Bottom: Starting from a reduced mesh with 9k triangles. We compare against the normal map baker in Simplygon by
showing split images with difference images (red/blue = too bright/dim compared to reference), and through PSNR and FLIP [ANA∗20]
metrics. The mesh is courtesy of the Smithsonian 3D Digitization project [Smi18].

Base mesh (1k tris) Displaced (64k tris) Ref (370k tris)
w/o normal map w/ normal map

Figure 4: We jointly optimize a base mesh, displacement map, and
normal map to match the appearance of the dancer, courtesy of
the Smithsonian 3D Digitization project [Smi18]. This is a complex
optimization problem, with displacement constrained to the nor-
mal direction, and a coarsely tessellated base mesh. Still, the ap-
pearance after optimization matches the reference closely. Notably,
some small details in the insets are baked into the normal map,
even though they could be easily represented by displacement. We
speculate that view parallax is minimal from the range of camera
distances used during optimization, causing displacement and nor-
mal mapping to be equally viable. The initial decimated mesh was
generated using the mesh simplifier in Autodesk Maya 2019.

4. Applications

In this section, we present several use cases for our method: joint
simplification of shape and appearance, prefiltering shape and ap-
pearance to reduce aliasing, geometric simplification of skinned
character animation, approximation of aggregate geometry, and 3D
mesh extraction from implicit surfaces. We defer discussion of im-
plementation details until Section 5. Please refer to our interactive
image viewer for detailed image comparisons.

4.1. Joint Shape-Appearance Simplification

Simplifying complex assets with minimal loss in visual fidelity
is our most straightforward application. We present three variants
that demonstrate joint optimization over different combinations of
shape and appearance: normal map baking, joint simplification that
also accounts for surface reflectance, and approximating complex
meshes with displacement maps applied on a coarse base domain.

Normal map baking. As an initial example, we start from a sphere
with 3k triangles and optimize shape and a tangent-space normal
map to approximate a highly detailed reference mesh with 735k
triangles. Besides the normals, the material is otherwise fixed as
diffuse uniform gray. Our result is shown in the top row of Fig-
ure 3. While some high-frequency detail is missing, the result is
nonetheless encouraging, considering that the optimization process
is entirely automatic and uses no direct information about the ref-
erence model. In the bottom row of the figure, we repeat the exper-
iment starting from a reduced version of the reference mesh with
9k triangles, as produced by Simplygon Free 8.3. As expected, this
improves the results considerably, as it is now sufficient to fine-
tune the geometry instead of discovering it from scratch, and we

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

J. Hasselgren, J. Munkberg, J. Lehtinen, M. Aittala and S. Laine / Appearance-Driven Automatic 3D Model Simplification

G
eo

m
et

ry
N

or
m

al
s

Fu
ll

sh
ad

in
g

Simplygon (7k tris) Our (7k tris) Reference (300k tris) Simplygon vs reference Our vs reference
Figure 5: Analysis of the Ewer sculpture mesh. Top row: Initial simplified geometry by Simplygon, our optimized geometry, and original
geometry. Difference images on the right show the coverage errors of the simplified meshes overlaid on the reference mesh. Red indicates
pixels covered by the simplified mesh but not the reference mesh, and blue indicates the opposite situation. As can be seen, optimizing the
geometry improves the silhouettes considerably. Middle row: Closeups of normals generated by Simplygon, our optimized normals, and
reference normals, followed by difference images. Note that our normals are not optimized directly against reference normals but discovered
via optimizing the full shading result against the reference. Bottom row: Full shading results rendered at 1 spp with difference images
(red/blue = too bright/dim compared to reference). Our result exhibits fewer overly bright pixels because the rendering is optimized to match
the reference on average, thereby reducing aliasing-induced sparkling. Some of the improvement over Simplygon’s output may be attributed
to the use of a more versatile shading model, but that does not explain the improvement in, e.g., normals or silhouettes.

Reduced (15k tris) Our (15k tris) Ref (81k tris)

Figure 6: A character from the Unreal Engine Paragon as-
set [Epi18]. We clear up some of the artifacts introduced by the
automatically reduced mesh (generated in Autodesk Maya 2019),
reattach geometry, and repair texture. The bottom row shows dif-
ference images (red/blue = too bright/dim compared to reference).

slightly outperform the Simplygon normal map baker. Please refer
to the supplemental material for a study of how quality is impacted
by the triangle count of the initial mesh.

Displacement map baking. In addition to normal maps, displace-
ment mapping is an increasingly popular technique for representing
complex shapes in real-time settings [Epi20]. It achieves a com-
pact representation by tessellating a coarse base mesh on the fly,
and displacing the resulting vertices in the direction of the interpo-
lated surface normal by amounts read from the displacement map
texture.

Our approach enables using displacement maps for approximat-
ing geometry by simply implementing the tessellation and displace-
ment steps in our forward rendering pipeline. Figure 4 shows a dis-
placement mapped version of the dancer mesh, rendered with dif-
fuse shading to make the geometrical impact more apparent. Our
result is obtained by jointly optimizing the pre-tessellation shape
of the base mesh, the normal map, and the displacement map. As
shown in the insets, our process yields a natural “division of la-
bor” between the representations: the base mesh models the overall
shape, the displacement map models mid-scale detail, and the finest

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

J. Hasselgren, J. Munkberg, J. Lehtinen, M. Aittala and S. Laine / Appearance-Driven Automatic 3D Model Simplification

64
×

64
pi

xe
ls

51
2
×

51
2

pi
xe

ls

Mesh Diffuse map Specular Map Normals Shaded Ref: 1 spp Our: 1 spp Ref: 256 spp
(370k tris) (8k tris) (370k tris)

Figure 7: We can jointly prefilter shape and appearance for a certain rendering resolution. The dancer in the top row is optimized for a
resolution of 64× 64 pixels, and for 512× 512 pixels in the bottom row. Note in the top row how the normals are smoothed to band-limit
shading. The three rightmost images show the models rendered at the intended resolution. We match the appearance of the super-sampled
reference well with a single sample per pixel.

detail that is not representable by the displaced surface is captured
by the normal map.

While the above example is optimized for a single, fixed tessel-
lation level, dynamic tessellation is often used for level of detail se-
lection. We can additionally optimize a displacement mapped mesh
to look good under multiple levels of tessellation. Please refer to the
supplemental material for further results.

Simplification with complex materials. Next, we upgrade to a
physically based shading model with one diffuse lobe and one
isotropic GGX specular lobe [WMLT07] commonly used in mod-
ern game engines. Figure 5 shows a bronze sculpture of high geo-
metric complexity, complex texture mapped materials, and normal
maps. Here, we optimize jointly for shape and appearance under
random views and point light directions. The specular term intro-
duces higher frequencies and higher dynamic range, both of which
make the optimization process more challenging. Hence, we use
an image-domain loss robust to large floating-point values. Please
refer to Section 5.3 for details. We compare against the reference
and to the initial mesh reduced using Simplygon. Our method, opti-
mizing based on visual differences, closely matches the true silhou-
ette, finds accurate normals, and captures the shaded appearance of
the reference. The specular highlights in our results are somewhat
blurred, but it could be argued that this is preferable to the aliasing
that the reference mesh shows when rendered at 1 spp.

Automatic cleanup. As a final example, Figure 6 demonstrates
cleanup of the result of an unsuccessful mesh decimation operation
performed in another software package. In this test, we reduced a
game character from the Unreal Engine Paragon asset [Epi18] from
81k to 15k triangles in Autodesk Maya 2019. Note that the auto-

matic reduction slightly decreases the volume of the mesh, detaches
geometric elements, suffers from incorrect texturing, and produces
some self-intersecting geometry. After optimization, we regain the
volume and automatically clean up most of the geometry and tex-
turing issues. We additionally show that our results generalize to
different renderers by rendering the meshes in a path tracer with
environment lighting and global illumination, rather than the ras-
terizer used during training. Please refer to the supplemental image
viewer for an in depth comparison with results from both renderers.

4.2. Shape and Appearance Prefiltering

In the previous section, our goal was to create faithful representa-
tions of complex assets with reduced triangle counts. A closely re-
lated variant of this problem is to find efficiently renderable approx-
imations to original assets that are so complex that they require a
substantial amount of supersampling to produce alias-free images.
We call this problem joint prefiltering of shape and appearance.
The resulting optimized models have the property that they repro-
duce, when rendered at only one sample per pixel, the appearance
of assets that require potentially hundreds of samples per pixel for
alias-free reproduction. The only practical differences in the opti-
mization are specifying a typically smaller target image resolution,
and rendering the reference images with enough supersampling to
ensure lack of aliasing; all previously demonstrated freedoms in
choosing the shape and appearance models still apply. We address
some technical challenges associated with high triangle counts in
Section 5.2.

Figure 7 shows joint shape and appearance prefiltering on the
golden statue, targeting rendering resolutions of 64×64 and 512×
512 pixels. Note that the result prefiltered for the smaller resolution

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

J. Hasselgren, J. Munkberg, J. Lehtinen, M. Aittala and S. Laine / Appearance-Driven Automatic 3D Model Simplification

O
ur

(5
k

tr
is

)

T-Pose Frame 0 Frame 39

O
ur

(5
k

tr
is

)
R

ef
(1

9k
tr

is
)

Figure 8: Mesh decimation applied to an animated, rigged charac-
ter from RenderPeople [Ren20]. We reduce the mesh and optimize
vertex positions, skinning weights, normal maps, and material pa-
rameters over the animation.

of 64×64 pixels has, as one would expect, considerably smoother
normals that account, together with the specular map, for the ef-
fect of averaging present in supersampling. Also note the geomet-
ric smoothing, e.g., the flower on the statue’s head. When rendered
at the intended resolution, the low-resolution mesh matches the ap-
pearance of the reference well, with no apparent aliasing.

To obtain an appropriate amount of prefiltering at different ren-
dering resolutions (i.e., rendering distances), it is not sufficient
to optimize for one resolution only. For materials, this is easy
to achieve by treating each mipmap level as an independent la-
tent variable. This yields resolution-specific material representa-
tions that a trilinear texture lookup will automatically interpolate
between. Even though linear interpolation between material param-
eters is not generally correct [BN12], the optimization process will
find a representation that, assuming trilinear texture fetches will be
used, matches the target images as well as possible.

For geometry, we can store multiple sets of vertex positions and
choose between these based on distance to mesh, average pro-
jected edge length, or a similar heuristic. As with mipmapping,
linear interpolation between levels can be used to eliminate pop-
ping artifacts. To simplify the experiments, we have opted to keep
the topology fixed, so no reduction in triangle count is obtained
in our tests—for geometric simplification, a mesh LOD scheme
would need to be incorporated into the optimization. Please see
the accompanying video for an example animation of continuous,
distance-dependent prefiltering.

4.3. Animation and Skinning

Having so far focused on static scenes, we now study appearance-
driven simplification of animated articulated characters over entire
animation sequences. More precisely, given a high-resolution ref-
erence mesh animated by skeletal subspace deformation (SSD), we

Initial guess (11k tris) Our (11k tris) Reference (1.2M tris)

Initial guess (6.5k tris) Our (6.5k tris) Reference (1.7M tris)

Figure 9: Approximating aggregate geometry. We start from a low-
polygon mesh and jointly optimize shape, material parameters, and
transparency. The shaded results are rendered in a path tracer to
illustrate that our results generalize across renderers. Top row: The
leaves and flowers of the “isHibiscus“ asset (1.2M triangles), ap-
proximated by 11k tris. Bottom row: The leaves from the “isGar-
denia“ asset (1.7M triangles), approximated by 6.5k triangles. The
models are taken from the Moana Island Scene [Wal18], a publicly
available data set courtesy of Walt Disney Animation Studios.

optimize over the bind-pose vertex positions, normals, SVBRDF,
and skinning weights (bone-vertex attachments) of a simplified
model in an attempt to replicate the appearance of the reference
animation. In contrast to simplifying the character in the bind pose
(T-pose) only, this holds promise for being able to strike compro-
mises to distribute the error evenly among the frames by adjusting
the geometry, skinning weights, and materials appropriately.

Implementation is straightforward: the only addition required is
blending transformed vertex positions using the skinning weights,
a simple linear operation. An example is shown in Figure 8, where
we decimate a rigged animated mesh in a completely automated
process. We include examples on rigged meshes from RenderPeo-
ple [Ren20] using skeletal animations from the CMU motion cap-
ture database [Lab20] in the accompanying video.

We assume the time-varying bone transformations are known,
and treat them as constants during optimization. Joint optimization
of both bone transformations and skinning weights [JT05] is a pos-
sible direction for future work. Furthermore, we assume that nor-
mal maps and SVBRDFs are constant in time. Modeling dynamic
behavior like wrinkles opens another interesting future direction.

Above we use a reduced mesh as initial guess, but to thoroughly
battle-test our ability to optimize skinning weights we instead start
from a sphere and morph it into an animated figure with known
skeletal animation, jointly optimizing shape, materials and skinning
weights. Please refer to the video for results.

4.4. Approximating Aggregate Geometry

Stochastic aggregate geometry, such as foliage, are particularly dif-
ficult to simplify: as the overall appearance emerges from the com-

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

J. Hasselgren, J. Munkberg, J. Lehtinen, M. Aittala and S. Laine / Appearance-Driven Automatic 3D Model Simplification

Initial guess Our rasterized model Ray marched
12k triangles PSNR: 26.51 dB, FLIP: 0.045 implicit surface

Initial guess Our rasterized model Our optimized mesh
12k triangles PSNR: 29.99 dB, FLIP: 0.036

Figure 10: We convert a ray marched implicit model, an adapted
version of the ShaderToy “Elephant” ©Inigo Quilez, to a mesh with
materials by optimizing for visual loss in a differentiable raster-
izer. We use a tessellated sphere (12k triangles) as initial guess and
jointly optimize shape and appearance. We also show the corre-
sponding results using a better initial guess, produced by marching
cubes. Note the improvements on sharp details, e.g., the tusks.

bined effect of many small, disjoint components, techniques such
as mesh decimation are ineffective.

Cook et al. [CHPR07] introduce a stochastic decimation tech-
nique that exploits a known scene graph, and randomly remove a
subset of the geometric elements and alter the remaining elements,
e.g., by scaling and contrast adjustments, to preserve the overall ap-
pearance of a scene. We approach the same problem from another
angle, drawing inspiration from the billboard clouds of Décoret
et al. [DDSD03]: instead of stochastically pruning the procedural
scene graph, we replace the complex leaf geometries with textured
quads. With the quads providing an initial guess, we then jointly
optimize material parameters, shape, and transparency based on
visual loss of rendered images. For this, we extended the differen-
tiable rasterization primitives of Laine et. al [LHK∗20] to support
order-independent transparency through depth peeling [Eve01].
Please refer to Section 5.2 for details.

In Figure 9, we show two examples of simplification of aggregate
geometry from the Disney Moana asset [Wal18]. In both cases, we
create plausible approximations from only 0.8% and 0.4% of the
triangles of the reference mesh, respectively. For this application,
we used squared L2 as objective function.

In Figure 1, we instance our approximation 3000× and render in
a path tracer. The result closely resembles the reference with a mas-
sive reduction in geometric complexity. Our supplemental material
includes a comparison with stochastic simplification [CHPR07].
Please also refer to our video for animated results.

4.5. Generalizations

All examples so far have used the same geometric representation
for both the latent representation and the reference model. More-
over, the reference images have been produced by the same ren-
derer as used for optimization. Enabled by supervising the opti-
mization strictly in image space, we now demonstrate generaliza-
tion across surface representations and rendering systems. While
the full scope of potential applications is vast, we illustrate this by
converting a ray marched implicit surface to a mesh. In the supple-
mental, we additionally include an example of transferring a path
traced rendered model to a rasterizer.

Textured meshes from implicit surfaces. In Figure 10, we adapt
an implicit surface pixel shader from ShaderToy [JmQ14] to isolate
the main object and match the lighting and camera model of our
renderer. We automatically convert this ray marched implicit sur-
face to a triangle mesh with materials. We use a tessellated sphere
as the initial guess for the geometry. For this example, we also
add an ambient material term to our latent representation to better
match the lighting of the implicit surface renderer, which uses cus-
tom ambient lighting. We also use a static light position, so shad-
owing is captured and baked into the material parameters in the
optimization process. View-dependent shading effects, e.g., spec-
ular highlight, are still captured. Please refer to the supplemental
material for additional results.

5. Implementation

This section covers the implementation details of our method. We
first describe the differentiable mesh operations that are applied to
the mesh before rendering. The second part details our differen-
tiable renderer, and the final part provides details of the optimiza-
tion process.

5.1. Mesh Operations

Referring to Figure 2, our pipeline includes differentiable mesh op-
erations for tangent space computation, animation & skinning, and
displacement mapping.

Tangent space To optimize tangent space normal maps on de-
forming geometry, the tangent frame must be differentiable and
dynamically updated to reflect any change in vertex position. We
compute smooth vertex normals and derive tangent and bi-tangent
vectors from the vertex positions and texture coordinates [Mik08].
Using mesh-derived smooth normals is a not a limitation because
creases or other sharp features can be handled by the normal map.

Animation & skinning We support skinning for Universal Scene
Description (USD) [Pix16] meshes and rely on the USD API to
evaluate skeleton animation. We optimize the skinning weights of
animated meshes, and therefore implement a differentiable skin-
ning operator according to:

vs
i = ∑

b∈B
wibMbvi, (2)

where B is the set of bones, Mb is the bone transform matrix for the
current frame, and wib is the skinning weight of bone b influencing

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

J. Hasselgren, J. Munkberg, J. Lehtinen, M. Aittala and S. Laine / Appearance-Driven Automatic 3D Model Simplification

vertex vi. Weights are typically stored using a sparse indexed rep-
resentation, but we implement the full dense skinning operator to
support any vertex-bone association during optimization.

Displacement mapping Here, the latent representation consists of
a coarse base mesh and a scalar displacement map. The mesh is
subdivided, and the displacement map is used to displace the tessel-
lated vertices along the interpolated normal direction. The tessella-
tor uses edge-midpoint subdivision [WZL∗18], where each triangle
is split into four new triangles by inserting a new vertex along each
edge. This operation changes topology, which is not a differentiable
operation in our current renderer. This is simple to work around by
using a tessellation criteria that does not depend on any parame-
ters requiring gradients. For the example in Section 4.1, we select
a constant tessellation factor and precompute the topology of the
tessellated mesh before optimization. The position of each vertex
created by the tessellation is recomputed every iteration to ensure
that gradients are propagated correctly.

For displacement lookups we deploy the differentiable texture
primitive of Laine et al. [LHK∗20], and displace each vertex ac-
cording to:

vd
i = vi + tex2d(ti) ·ni, (3)

where vi is the original tessellated vertex position, ni is the interpo-
lated normal, and ti is the texture coordinate.

5.2. Differentiable Renderer

Our renderer is based on the differentiable rasterization primitives
of Laine et al. [LHK∗20]. We employ deferred shading based on a
G-buffer that stores 3D position, normal, tangent, bi-tangent, and
texture coordinates for each pixel.

For materials, we use a variant of the physically based model
from Disney [Bur12] that is common in modern game en-
gines [Kar13, LdR14]. This allows us to easily import game assets
and lets us render our optimized meshes directly in existing en-
gines without modifications. Material models for real-time render-
ing commonly combine a diffuse term with an isotropic, specular
GGX lobe [WMLT07]. The parameters for the diffuse lobe kd are
provided in a four-component texture, where the optional fourth
channel α represents transparency. The specular lobe is described
by a roughness value r for the GGX normal distribution function
and a metalness factor m which interpolates between plastic and
metallic appearance by computing a specular highlight color ac-
cording to ks = (1−m) ·0.04+m · kd [Kar13].

For appearance filtering, we want additional flexibility in sup-
pressing the specular lobe. To that end, we add a parameter γ that
scales the specular lobe according to: k′s = (1− γ)ks. Our specu-
lar parameters are thus represented by a three-component texture
(γ,r,m) where each component may vary spatially. This represen-
tation is purposely chosen to resemble the commonly used ORM
(occlusion, roughness, metalness) textures, where we have replaced
the occlusion channel with γ.

Note that we have chosen to reparameterize a single, fixed BSDF
model for appearance filtering to make results easily adoptable in
game engines and to show that true prefiltering can be made a part

of the asset pipeline. However, it would be straightforward to re-
place the BSDF with multi-lobe models [BN12], spherical harmon-
ics representations [HSRG07], or a variant of the neural represen-
tation proposed by Müller et al. [MMR∗19] for more powerful rep-
resentations.

Antialiasing For the prefiltering applications in Section 4.2, we
want to match the appearance of a highly supersampled target
image to a 1 spp rendering of our latent representation. In prac-
tice, we experience instabilities when optimizing for low rendering
resolutions due to approximations in silhouette gradient computa-
tions [LHK∗20]. We work around this by rendering our latent rep-
resentation using multisampled antialiasing (MSAA), i.e., we sam-
ple visibility at a higher rate but shade only once per pixel. This
setup improves visibility gradients at silhouettes, but still enforces
that our latent representation matches the shading of the supersam-
pled reference with just a single shading sample.

This solution has the limitation that MSAA correctly integrates
the visibility term, which is not expected for 1 spp rendering. This
creates a small mismatch between our optimization setup and final
rendering of the optimized model at 1 spp, but we have not found
this to be an issue in practice. MSAA is only used during training,
and all our result images and animations indicating 1 spp are ren-
dered without it, i.e., they represent true 1 spp rendering without
any antialiasing unless otherwise mentioned.

Order-independent transparency Transparency is required for
the aggregate geometry application in Section 4.4. We implement
order-independent transparency through depth peeling [Eve01],
i.e., by rendering multiple passes where each pass peels off the
front-most depth layer. We extend the rasterization primitive of
Laine et al. [LHK∗20] by adding a two-sided depth test to their
fragment shader and passing the depth output of previous rasteriza-
tion pass as a parameter to the next. While we rasterize the depth
layers front-to-back, we perform blending in back-to-front order
(starting with the background) as this works best with their an-
tialiasing primitive [LHK∗20]. Eight passes of depth peeling were
used in our experiments.

5.3. Optimization

Objective function Our renderer uses physically based shading
and produces images with high dynamic range. Therefore, the ob-
jective function must be robust to the full range of floating-point
values. Following recent work in HDR image denoising [MH20],
our image space loss, Limage, computes the L1 norm on tone
mapped colors. As tone map operator, we transform linear radi-
ance values, x, according to x′ = Γ(log(x+ 1)), where Γ(x) is the
sRGB transfer function [SACM96]:

Γ(x) =

{
12.92x x≤ 0.0031308
(1+a)x1/2.4−a x > 0.0031308

(4)

a = 0.055.

In addition, we use a Laplacian regularizer [Sor05] on the tri-
angle mesh in our latent representation. This is important in the
beginning of optimization to keep the mesh surface intact when

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

J. Hasselgren, J. Munkberg, J. Lehtinen, M. Aittala and S. Laine / Appearance-Driven Automatic 3D Model Simplification

gradients are large. The uniformly-weighted differential δi of ver-
tex vi is given by δi = vi− 1

|Ni| ∑ j∈Ni
vj, where Ni is the one-ring

neighborhood of vertex vi. We follow Laine et al. [LHK∗20] and
use a Laplacian regularizer term given by

Lδ =
1
n

n

∑
i=1

∥∥δi−δi
′∥∥2

, (5)

where δi
′ is the uniformly-weighted differential of the input mesh

(i.e., our initial guess). When the input mesh is a poor approxima-
tion, e.g., a sphere, we use an absolute regularizer and set δi

′ = 0.

Our combined objective function is:

Lopt = Limage +λtLδ, (6)

where λt is the regularization weight that depends on the current
optimization iteration t. We gradually reduce λt during optimiza-
tion according to λt =(λt−1−λmin) ·10−kt +λmin. Here, k = 10−6,
and λmin is chosen as 2% of the initial weight, λ0. The uni-
form Laplacian regularizer depends on tessellation, whereas image-
domain loss does not. Hence, the image loss must be balanced
against the Laplacian loss as our applications include meshes with
greatly varying triangle counts. The initial weight, λ0, can either be
specifed by the user or by a simple heuristic: We evaluate the Lapla-
cian error at the start of optimization, and set λ0 = 0.25 Limage/Lδ,
which has worked well for most of our examples. We optimize the
latent representation using Adam [KB15] with default parameters.
Please refer to the supplemental material for an example of how
the regularizer improves mesh quality and the detailed learning rate
settings.

6. Conclusions and Future Work

We have demonstrated that a wide spectrum of modeling tasks, in-
cluding simplification, conversion, and prefiltering, can be achieved
in a common inverse rendering framework that supports various
shape and appearance models. While we show improvements in in-
dividual examples such as mesh decimation, we believe the main
strength of our approach lies in the ability to jointly optimize over
shape, appearance, and animation parameters. Additionally, cou-
pling automatic differentiation and optimization makes extensions
to new applications and latent representations easy.

Our method is subject to the same limitations as most other
methods based on differentiable rasterization and cannot account
for effects such as refractive materials, specular reflections or sub-
surface scattering. In practice, we note that our results generalize
across renderers, as shown in Figure 1. During optimization we
never modify the topology of the initial guess. If the initial guess
is too crudely tessellated to reasonably capture the surface of the
reference model, we note that texture details can be blurred due to
view-parallax effects.

There are wide opportunities for future work. To keep a clear
focus for this paper, we have only evaluated applications within
the limitations of triangle meshes and a commonly used material
model, so that the optimized representation can be used unmodified
in existing renderers. However, an obvious line of extensions is to
use our framework to augment traditional fixed-function graphics
models with learned representations, effectively creating hybrids

between traditional graphics and the currently popular fully learned
renderers [TZN19].

We also envision that appearance-based optimization could be
used in semi-automated modeling tools. When visualizing the op-
timization process, it is often evident where problems occur due to,
e.g., under-tessellated regions or insufficient mesh genus, and an
artist could clean up such areas given interactive modeling tools.
Our approach is fast enough to apply in these scenarios.

References
[ANA∗20] ANDERSSON P., NILSSON J., AKENINE-MÖLLER T., OS-

KARSSON M., ÅSTRÖM K., FAIRCHILD M. D.: FLIP: A Difference
Evaluator for Alternating Images. Proceedings of the ACM on Computer
Graphics and Interactive Techniques 3, 2 (2020), 15:1–15:23. 5

[BN12] BRUNETON E., NEYRET F.: A Survey of Non-linear Pre-filtering
Methods for Efficient and Accurate Surface Shading. IEEE Transactions
on Visualization and Computer Graphics 18, 2 (2012), 242–260. 2, 8, 10

[Bur12] BURLEY B.: Physically Based Shading at Disney. In SIG-
GRAPH Courses: Practical Physically Based Shading in Film and Game
Production (2012). 10

[CHPR07] COOK R. L., HALSTEAD J., PLANCK M., RYU D.: Stochas-
tic Simplification of Aggregate Detail. ACM Trans. Graph. 26, 3 (2007).
2, 9

[CLG∗19] CHEN W., LING H., GAO J., SMITH E., LEHTINEN J.,
JACOBSON A., FIDLER S.: Learning to predict 3d objects with an
interpolation-based differentiable renderer. In Advances in Neural In-
formation Processing Systems 32. 2019, pp. 9609–9619. 3

[CLL∗13] CORSINI M., LARABI M.-C., LAVOUÉ G., PETRÍK O.,
VÁSA L., WANG K.: Perceptual metrics for static and dynamic triangle
meshes. Computer Graphics Forum 32, 1 (2013), 101–125. 2

[CTZ20] CHEN Z., TAGLIASACCHI A., ZHANG H.: BSP-Net: Gener-
ating Compact Meshes via Binary Space Partitioning. Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2020). 3

[CVM∗96] COHEN J., VARSHNEY A., MANOCHA D., TURK G., WE-
BER H., AGARWAL P., BROOKS F., WRIGHT W.: Simplification en-
velopes. In Proceedings of the 23rd Annual Conference on Computer
Graphics and Interactive Techniques (1996), SIGGRAPH ’96, pp. 119–
128. 2

[DDSD03] DÉCORET X., DURAND F., SILLION F., DORSEY J.: Bill-
board clouds for extreme model simplification. ACM Trans. Graph. 22,
3 (2003). 9

[DHI∗13] DUPUY J., HEITZ E., IEHL J.-C., POULIN P., NEYRET F.,
OSTROMOUKHOV V.: Linear Efficient Antialiased Displacement and
Reflectance Mapping. ACM Trans. Graph. 32, 6 (2013). 2

[Don19] DONG Y.: Deep appearance modeling: A survey. Visual Infor-
matics 3, 2 (2019), 59–68. 3

[Epi18] EPIC GAMES: Epic games paragon assets, 2018. https://
www.unrealengine.com/en-US/paragon. 6, 7

[Epi20] EPIC GAMES: Unreal engine 5: Nanite, 2020.
https://www.unrealengine.com/en-US/blog/
a-first-look-at-unreal-engine-5. 6

[Eve01] EVERITT C.: Interactive Order-Independent Transparency, 2001.
9, 10

[Fou92] FOURNIER A.: Filtering Normal Maps and Creating Multiple
Surfaces. Tech. rep., 1992. 2

[GCP∗09] GHOSH A., CHEN T., PEERS P., WILSON C. A., DEBEVEC
P.: Estimating Specular Roughness and Anisotropy from Second Or-
der Spherical Gradient Illumination. Computer Graphics Forum 28, 4
(2009), 1161–1170. 3

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

https://www.unrealengine.com/en-US/paragon
https://www.unrealengine.com/en-US/paragon
https://www.unrealengine.com/en-US/blog/a-first-look-at-unreal-engine-5
https://www.unrealengine.com/en-US/blog/a-first-look-at-unreal-engine-5

J. Hasselgren, J. Munkberg, J. Lehtinen, M. Aittala and S. Laine / Appearance-Driven Automatic 3D Model Simplification

[GGG∗16] GUARNERA D., GUARNERA G. C., GHOSH A., DENK C.,
GLENCROSS M.: BRDF Representation and Acquisition. In Proceed-
ings of the 37th Annual Conference of the European Association for
Computer Graphics: State of the Art Reports (2016), pp. 625–650. 3

[GH97] GARLAND M., HECKBERT P. S.: Surface Simplification Us-
ing Quadric Error Metrics. In SIGGRAPH ’97: Proceedings of the 24th
Annual Conference on Computer Graphics and Interactive Techniques
(1997), pp. 209–216. 2

[GLD∗19] GAO D., LI X., DONG Y., PEERS P., XU K., TONG X.: Deep
Inverse Rendering for High-Resolution SVBRDF Estimation from an
Arbitrary Number of Images. ACM Trans. Graph. 38, 4 (2019). 3

[GSH∗20] GUO Y., SMITH C., HAŠAN M., SUNKAVALLI K., ZHAO
S.: MaterialGAN: Reflectance Capture Using a Generative SVBRDF
Model. ACM Trans. Graph. 39, 6 (2020). 3

[GTHD03] GARDNER A., TCHOU C., HAWKINS T., DEBEVEC P.: Lin-
ear Light Source Reflectometry. ACM Trans. Graph. 22, 3 (2003), 749–
758. 3

[HKH18] HIROHARU KATO Y. U., HARADA T.: Neural 3D Mesh Ren-
derer. In The IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR) (2018). 3

[HSRG07] HAN C., SUN B., RAMAMOORTHI R., GRINSPUN E.: Fre-
quency Domain Normal Map Filtering. In ACM SIGGRAPH 2007 Pa-
pers (2007), pp. 28–40. 2, 10

[JmQ14] JEREMIAS P., QUILEZ I.: Shadertoy: Learn to Create Every-
thing in a Fragment Shader. In SIGGRAPH Asia 2014 Courses (2014).
9

[JSL∗19] JATAVALLABHULA K., SMITH E., LAFLECHE J.-F., FUJI
TSANG C., ROZANTSEV A., CHEN W., XIANG T., LEBAREDIAN R.,
FIDLER S.: Kaolin: A PyTorch Library for Accelerating 3D Deep Learn-
ing Research. arXiv:1911.05063 (2019). 3

[JT05] JAMES D., TWIGG C.: Skinning mesh animations. ACM Trans.
Graph. 24, 3 (2005). 8

[Kar13] KARIS B.: Real shading in unreal engine 4. SIGGRAPH 2013
Course: Physically Based Shading in Theory and Practice (2013). 2, 10

[KB15] KINGMA D. P., BA J.: Adam: A Method for Stochastic Opti-
mization. In Proceedings of the 3rd International Conference for Learn-
ing Representations (2015). 11

[Lab20] LAB C. G.: CMU Graphics Lab Motion Capture Database, 2020.
http://mocap.cs.cmu.edu/. 8

[LADL18] LI T.-M., AITTALA M., DURAND F., LEHTINEN J.: Differ-
entiable Monte Carlo Ray Tracing through Edge Sampling. ACM Trans.
Graph. (Proc. SIGGRAPH Asia) 37, 6 (2018), 222:1–222:11. 3

[LdR14] LAGARDE S., DE ROUSIERS C.: Moving frostbite to physically
based rendering 3.0. SIGGRAPH 2014 Course: Physically Based Shad-
ing in Theory and Practice (2014). 10

[LE97] LUEBKE D., ERIKSON C.: View-Dependent Simplification of
Arbitrary Polygonal Environments. In SIGGRAPH ’97: Proceedings of
the 24th Annual Conference on Computer Graphics and Interactive Tech-
niques (1997), pp. 199–208. 2

[LHK∗20] LAINE S., HELLSTEN J., KARRAS T., SEOL Y., LEHTINEN
J., AILA T.: Modular primitives for high-performance differentiable ren-
dering. ACM Transactions on Graphics 39, 6 (2020). 3, 4, 9, 10, 11

[LKG∗03] LENSCH H. P. A., KAUTZ J., GOESELE M., HEIDRICH W.,
SEIDEL H.-P.: Image-Based Reconstruction of Spatial Appearance and
Geometric Detail. ACM Trans. Graph. 22, 2 (2003), 234–257. 3

[LN17] LOUBET G., NEYRET F.: Hybrid mesh-volume LoDs for all-
scale pre-filtering of complex 3D assets. Computer Graphics Forum 36,
2 (2017), 431–442. 2

[LT97] LOW K.-L., TAN T.-S.: Model Simplification Using Vertex-
Clustering. In Proceedings of the 1997 Symposium on Interactive 3D
Graphics (1997), pp. 75–82. 2

[LT00] LINDSTROM P., TURK G.: Image-driven simplification. ACM
Transactions on Graphics 19, 3 (2000), 204–241. 2

[LWC∗02] LUEBKE D., WATSON B., COHEN J. D., REDDY M.,
VARSHNEY A.: Level of Detail for 3D Graphics. Elsevier Science Inc.,
USA, 2002. 2

[MH20] MUNKBERG J., HASSELGREN J.: Neural denoising with layer
embeddings. Computer Graphics Forum 39 (2020), 1–12. 10

[Mik08] MIKKELSEN M.: Simulation of wrinkled surfaces revisited,
2008. 9

[MMR∗19] MÜLLER T., MCWILLIAMS B., ROUSSELLE F., GROSS M.,
NOVÁK J.: Neural importance sampling. ACM Trans. Graph. 38, 5
(2019). 10

[MST∗20] MILDENHALL B., SRINIVASAN P. P., TANCIK M., BARRON
J. T., RAMAMOORTHI R., NG R.: NeRF: Representing Scenes as Neu-
ral Radiance Fields for View Synthesis. In ECCV (2020). 3

[NDSRJ20] NIMIER-DAVID M., SPEIERER S., RUIZ B., JAKOB W.: Ra-
diative Backpropagation: An Adjoint Method for Lightning-Fast Differ-
entiable Rendering. ACM Trans. Graph. 39, 4 (2020). 3

[NDVZJ19] NIMIER-DAVID M., VICINI D., ZELTNER T., JAKOB W.:
Mitsuba 2: A Retargetable Forward and Inverse Renderer. ACM Trans.
Graph. 38, 6 (2019). 3

[NLGK18] NAM G., LEE J. H., GUTIERREZ D., KIM M. H.: Practical
SVBRDF Acquisition of 3D Objects with Unstructured Flash Photogra-
phy. ACM Trans. Graph. 37, 6 (2018). 3

[OB10] OLANO M., BAKER D.: LEAN Mapping. In Proceedings of
the 2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games (2010), pp. 181–188. 2

[PGC∗17] PASZKE A., GROSS S., CHINTALA S., CHANAN G., YANG
E., DEVITO Z., LIN Z., DESMAISON A., ANTIGA L., LERER A.: Au-
tomatic differentiation in PyTorch. In NIPS-W (2017). 4

[Pix16] PIXAR ANIMATION STUDIOS: Universal Scene Description
Website, 2016. http://www.openusd.org. 9

[Ren20] RENDERPEOPLE: Renderpeople, 2020. https://
renderpeople.com/3d-people/. 8

[RRN∗20] RAVI N., REIZENSTEIN J., NOVOTNY D., GORDON T., LO
W.-Y., JOHNSON J., GKIOXARI G.: Accelerating 3D Deep Learning
with PyTorch3D. arXiv:2007.08501 (2020). 3

[SACM96] STOKES M., ANDERSON M., CHANDRASEKAR S., MOTTA
R.: A Standard Default Color Space for the Internet - sRGB, 11 1996.
URL: https://www.w3.org/Graphics/Color/sRGB.html.
10

[Sch97] SCHROEDER W.: A topology modifying progressive decima-
tion algorithm. In In VIS ’97: 8th conference on Visualization (1997),
pp. 205–212. 2

[SKWW17] SZTRAJMAN A., KŘIVÁNEK J., WILKIE A., WEYRICH T.:
Image-based Remapping of Material Appearance. In Proc. 5th Workshop
on Material Appearance Modeling (2017), pp. 5–8. 3

[Smi18] SMITHSONIAN: Smithsonian 3D Digitization, 2018.
https://3d.si.edu/. 5

[Sor05] SORKINE O.: Laplacian mesh processing. In Eurographics 2005
- State of the Art Reports (2005). 4, 10

[Tok05] TOKSVIG M.: Mipmapping normal maps. Journal of Graphics
Tools 10, 3 (2005), 65–71. 2

[TZN19] THIES J., ZOLLHÖFER M., NIESSNER M.: Deferred Neural
Rendering: Image Synthesis Using Neural Textures. ACM Trans. Graph.
38, 4 (2019). 3, 11

[VKP∗19] VALENTIN J., KESKIN C., PIDLYPENSKYI P., MAKADIA A.,
SUD A., BOUAZIZ S.: TensorFlow Graphics: Computer Graphics Meets
Deep Learning. 3

[Wal18] WALT DISNEY ANIMATION STUDIOS: Moana island scene
(v1.1), 2018. http://technology.disneyanimation.com/
islandscene/. 8, 9

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

https://renderpeople.com/3d-people/
https://renderpeople.com/3d-people/
https://www.w3.org/Graphics/Color/sRGB.html
http://technology.disneyanimation.com/islandscene/
http://technology.disneyanimation.com/islandscene/

J. Hasselgren, J. Munkberg, J. Lehtinen, M. Aittala and S. Laine / Appearance-Driven Automatic 3D Model Simplification

[WK15] WEINMANN M., KLEIN R.: Advances in Geometry and Re-
flectance Acquisition (Course Notes). In SIGGRAPH Asia 2015 Courses
(2015). 3

[WMLT07] WALTER B., MARSCHNER S. R., LI H., TORRANCE K. E.:
Microfacet Models for Refraction through Rough Surfaces. In Pro-
ceedings of the 18th Eurographics Conference on Rendering Techniques
(2007), pp. 195–206. 2, 7, 10

[WZL∗18] WANG N., ZHANG Y., LI Z., FU Y., LIU W., JIANG Y.-G.:
Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images. In
ECCV (2018). 3, 10

[WZYR19] WU L., ZHAO S., YAN L.-Q., RAMAMOORTHI R.: Ac-
curate Appearance Preserving Prefiltering for Rendering Displacement-
Mapped Surfaces. ACM Trans. Graph. 38, 4 (2019). 2

[ZCL∗20] ZHANG Y., CHEN W., LING H., GAO J., ZHANG Y., TOR-
RALBA A., FIDLER S.: Image GANs meet Differentiable Ren-
dering for Inverse Graphics and Interpretable 3D Neural Rendering.
arXiv:2010.09125 (2020). 3

[ZFWW20] ZSOLNAI-FEHÉR K., WONKA P., WIMMER M.: Photore-
alistic Material Editing Through Direct Image Manipulation. Comput.
Graph. Forum 39, 4 (2020), 107–120. 3

[ZWDR16] ZHAO S., WU L., DURAND F., RAMAMOORTHI R.: Down-
sampling Scattering Parameters for Rendering Anisotropic Media. ACM
Trans. Graph. 35, 6 (2016). 2

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

