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Abstract

We propose an alternative generator architecture for
generative adversarial networks, borrowing from style
transfer literature. The new architecture leads to an au-
tomatically learned, unsupervised separation of high-level
attributes (e.g., pose and identity when trained on human
faces) and stochastic variation in the generated images
(e.g., freckles, hair), and it enables intuitive, scale-specific
control of the synthesis. The new generator improves the
state-of-the-art in terms of traditional distribution quality
metrics, leads to demonstrably better interpolation proper-
ties, and also better disentangles the latent factors of varia-
tion. To quantify interpolation quality and disentanglement,
we propose two new, automated methods that are applica-
ble to any generator architecture. Finally, we introduce a
new, highly varied and high-quality dataset of human faces.

1. Introduction
The resolution and quality of images produced by gen-

erative methods — especially generative adversarial net-
works (GAN) [22] — have seen rapid improvement recently
[30, 45, 5]. Yet the generators continue to operate as black
boxes, and despite recent efforts [3], the understanding of
various aspects of the image synthesis process, e.g., the ori-
gin of stochastic features, is still lacking. The properties of
the latent space are also poorly understood, and the com-
monly demonstrated latent space interpolations [13, 52, 37]
provide no quantitative way to compare different generators
against each other.

Motivated by style transfer literature [27], we re-design
the generator architecture in a way that exposes novel ways
to control the image synthesis process. Our generator starts
from a learned constant input and adjusts the “style” of
the image at each convolution layer based on the latent
code, therefore directly controlling the strength of image
features at different scales. Combined with noise injected
directly into the network, this architectural change leads to
automatic, unsupervised separation of high-level attributes

(e.g., pose, identity) from stochastic variation (e.g., freck-
les, hair) in the generated images, and enables intuitive
scale-specific mixing and interpolation operations. We do
not modify the discriminator or the loss function in any
way, and our work is thus orthogonal to the ongoing discus-
sion about GAN loss functions, regularization, and hyper-
parameters [24, 45, 5, 40, 44, 36].

Our generator embeds the input latent code into an inter-
mediate latent space, which has a profound effect on how
the factors of variation are represented in the network. The
input latent space must follow the probability density of the
training data, and we argue that this leads to some degree of
unavoidable entanglement. Our intermediate latent space
is free from that restriction and is therefore allowed to be
disentangled. As previous methods for estimating the de-
gree of latent space disentanglement are not directly appli-
cable in our case, we propose two new automated metrics —
perceptual path length and linear separability — for quanti-
fying these aspects of the generator. Using these metrics, we
show that compared to a traditional generator architecture,
our generator admits a more linear, less entangled represen-
tation of different factors of variation.

Finally, we present a new dataset of human faces
(Flickr-Faces-HQ, FFHQ) that offers much higher qual-
ity and covers considerably wider variation than existing
high-resolution datasets (Appendix A). We have made this
dataset publicly available, along with our source code and
pre-trained networks.1 The accompanying video can be
found under the same link.

2. Style-based generator

Traditionally the latent code is provided to the genera-
tor through an input layer, i.e., the first layer of a feed-
forward network (Figure 1a). We depart from this design
by omitting the input layer altogether and starting from a
learned constant instead (Figure 1b, right). Given a latent
code z in the input latent space Z , a non-linear mapping
network f : Z → W first produces w ∈ W (Figure 1b,
left). For simplicity, we set the dimensionality of both

1https://github.com/NVlabs/stylegan
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Figure 1. While a traditional generator [30] feeds the latent code
though the input layer only, we first map the input to an in-
termediate latent space W , which then controls the generator
through adaptive instance normalization (AdaIN) at each convo-
lution layer. Gaussian noise is added after each convolution, be-
fore evaluating the nonlinearity. Here “A” stands for a learned
affine transform, and “B” applies learned per-channel scaling fac-
tors to the noise input. The mapping network f consists of 8 lay-
ers and the synthesis network g consists of 18 layers — two for
each resolution (42 − 10242). The output of the last layer is con-
verted to RGB using a separate 1× 1 convolution, similar to Kar-
ras et al. [30]. Our generator has a total of 26.2M trainable param-
eters, compared to 23.1M in the traditional generator.

spaces to 512, and the mapping f is implemented using
an 8-layer MLP, a decision we will analyze in Section 4.1.
Learned affine transformations then specialize w to styles
y = (ys,yb) that control adaptive instance normalization
(AdaIN) [27, 17, 21, 16] operations after each convolution
layer of the synthesis network g. The AdaIN operation is
defined as

AdaIN(xi,y) = ys,i
xi − µ(xi)
σ(xi)

+ yb,i, (1)

where each feature map xi is normalized separately, and
then scaled and biased using the corresponding scalar com-
ponents from style y. Thus the dimensionality of y is twice
the number of feature maps on that layer.

Comparing our approach to style transfer, we compute
the spatially invariant style y from vector w instead of an
example image. We choose to reuse the word “style” for
y because similar network architectures are already used
for feedforward style transfer [27], unsupervised image-to-
image translation [28], and domain mixtures [23]. Com-
pared to more general feature transforms [38, 57], AdaIN is
particularly well suited for our purposes due to its efficiency
and compact representation.

Method CelebA-HQ FFHQ
A Baseline Progressive GAN [30] 7.79 8.04
B + Tuning (incl. bilinear up/down) 6.11 5.25
C + Add mapping and styles 5.34 4.85
D + Remove traditional input 5.07 4.88
E + Add noise inputs 5.06 4.42
F + Mixing regularization 5.17 4.40

Table 1. Fréchet inception distance (FID) for various generator de-
signs (lower is better). In this paper we calculate the FIDs using
50,000 images drawn randomly from the training set, and report
the lowest distance encountered over the course of training.

Finally, we provide our generator with a direct means
to generate stochastic detail by introducing explicit noise
inputs. These are single-channel images consisting of un-
correlated Gaussian noise, and we feed a dedicated noise
image to each layer of the synthesis network. The noise
image is broadcasted to all feature maps using learned per-
feature scaling factors and then added to the output of the
corresponding convolution, as illustrated in Figure 1b. The
implications of adding the noise inputs are discussed in Sec-
tions 3.2 and 3.3.

2.1. Quality of generated images

Before studying the properties of our generator, we
demonstrate experimentally that the redesign does not com-
promise image quality but, in fact, improves it considerably.
Table 1 gives Fréchet inception distances (FID) [25] for var-
ious generator architectures in CELEBA-HQ [30] and our
new FFHQ dataset (Appendix A). Results for other datasets
are given in Appendix E. Our baseline configuration (A)
is the Progressive GAN setup of Karras et al. [30], from
which we inherit the networks and all hyperparameters ex-
cept where stated otherwise. We first switch to an improved
baseline (B) by using bilinear up/downsampling operations
[64], longer training, and tuned hyperparameters. A de-
tailed description of training setups and hyperparameters is
included in Appendix C. We then improve this new base-
line further by adding the mapping network and AdaIN op-
erations (C), and make a surprising observation that the net-
work no longer benefits from feeding the latent code into the
first convolution layer. We therefore simplify the architec-
ture by removing the traditional input layer and starting the
image synthesis from a learned 4× 4× 512 constant tensor
(D). We find it quite remarkable that the synthesis network
is able to produce meaningful results even though it receives
input only through the styles that control the AdaIN opera-
tions.

Finally, we introduce the noise inputs (E) that improve
the results further, as well as novel mixing regularization (F)
that decorrelates neighboring styles and enables more fine-
grained control over the generated imagery (Section 3.1).

We evaluate our methods using two different loss func-
tions: for CELEBA-HQ we rely on WGAN-GP [24],
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Figure 2. Uncurated set of images produced by our style-based
generator (config F) with the FFHQ dataset. Here we used a varia-
tion of the truncation trick [42, 5, 34] with ψ = 0.7 for resolutions
42 − 322. Please see the accompanying video for more results.

while FFHQ uses WGAN-GP for configuration A and non-
saturating loss [22] with R1 regularization [44, 51, 14] for
configurations B–F. We found these choices to give the best
results. Our contributions do not modify the loss function.

We observe that the style-based generator (E) improves
FIDs quite significantly over the traditional generator (B),
almost 20%, corroborating the large-scale ImageNet mea-
surements made in parallel work [6, 5]. Figure 2 shows an
uncurated set of novel images generated from the FFHQ
dataset using our generator. As confirmed by the FIDs,
the average quality is high, and even accessories such
as eyeglasses and hats get successfully synthesized. For
this figure, we avoided sampling from the extreme regions
of W using the so-called truncation trick [42, 5, 34] —
Appendix B details how the trick can be performed in W
instead of Z . Note that our generator allows applying the
truncation selectively to low resolutions only, so that high-
resolution details are not affected.

All FIDs in this paper are computed without the trun-
cation trick, and we only use it for illustrative purposes in
Figure 2 and the video. All images are generated in 10242

resolution.

2.2. Prior art

Much of the work on GAN architectures has focused
on improving the discriminator by, e.g., using multiple
discriminators [18, 47, 11], multiresolution discrimination
[60, 55], or self-attention [63]. The work on generator side
has mostly focused on the exact distribution in the input la-
tent space [5] or shaping the input latent space via Gaussian
mixture models [4], clustering [48], or encouraging convex-
ity [52].

Recent conditional generators feed the class identifier
through a separate embedding network to a large number
of layers in the generator [46], while the latent is still pro-
vided though the input layer. A few authors have considered
feeding parts of the latent code to multiple generator layers
[9, 5]. In parallel work, Chen et al. [6] “self modulate” the
generator using AdaINs, similarly to our work, but do not
consider an intermediate latent space or noise inputs.

3. Properties of the style-based generator
Our generator architecture makes it possible to control

the image synthesis via scale-specific modifications to the
styles. We can view the mapping network and affine trans-
formations as a way to draw samples for each style from a
learned distribution, and the synthesis network as a way to
generate a novel image based on a collection of styles. The
effects of each style are localized in the network, i.e., modi-
fying a specific subset of the styles can be expected to affect
only certain aspects of the image.

To see the reason for this localization, let us consider
how the AdaIN operation (Eq. 1) first normalizes each chan-
nel to zero mean and unit variance, and only then applies
scales and biases based on the style. The new per-channel
statistics, as dictated by the style, modify the relative impor-
tance of features for the subsequent convolution operation,
but they do not depend on the original statistics because of
the normalization. Thus each style controls only one convo-
lution before being overridden by the next AdaIN operation.

3.1. Style mixing

To further encourage the styles to localize, we employ
mixing regularization, where a given percentage of images
are generated using two random latent codes instead of one
during training. When generating such an image, we sim-
ply switch from one latent code to another — an operation
we refer to as style mixing — at a randomly selected point
in the synthesis network. To be specific, we run two latent
codes z1, z2 through the mapping network, and have the
corresponding w1,w2 control the styles so that w1 applies
before the crossover point and w2 after it. This regular-
ization technique prevents the network from assuming that
adjacent styles are correlated.

Table 2 shows how enabling mixing regularization dur-
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Figure 3. Two sets of images were generated from their respective latent codes (sources A and B); the rest of the images were generated by
copying a specified subset of styles from source B and taking the rest from source A. Copying the styles corresponding to coarse spatial
resolutions (42 – 82) brings high-level aspects such as pose, general hair style, face shape, and eyeglasses from source B, while all colors
(eyes, hair, lighting) and finer facial features resemble A. If we instead copy the styles of middle resolutions (162 – 322) from B, we inherit
smaller scale facial features, hair style, eyes open/closed from B, while the pose, general face shape, and eyeglasses from A are preserved.
Finally, copying the fine styles (642 – 10242) from B brings mainly the color scheme and microstructure.
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Mixing Number of latents during testing
regularization 1 2 3 4

E 0% 4.42 8.22 12.88 17.41
50% 4.41 6.10 8.71 11.61

F 90% 4.40 5.11 6.88 9.03
100% 4.83 5.17 6.63 8.40

Table 2. FIDs in FFHQ for networks trained by enabling the mix-
ing regularization for different percentage of training examples.
Here we stress test the trained networks by randomizing 1 . . . 4
latents and the crossover points between them. Mixing regular-
ization improves the tolerance to these adverse operations signifi-
cantly. Labels E and F refer to the configurations in Table 1.

(a) Generated image (b) Stochastic variation (c) Standard deviation

Figure 4. Examples of stochastic variation. (a) Two generated
images. (b) Zoom-in with different realizations of input noise.
While the overall appearance is almost identical, individual hairs
are placed very differently. (c) Standard deviation of each pixel
over 100 different realizations, highlighting which parts of the im-
ages are affected by the noise. The main areas are the hair, silhou-
ettes, and parts of background, but there is also interesting stochas-
tic variation in the eye reflections. Global aspects such as identity
and pose are unaffected by stochastic variation.

ing training improves the localization considerably, indi-
cated by improved FIDs in scenarios where multiple latents
are mixed at test time. Figure 3 presents examples of images
synthesized by mixing two latent codes at various scales.
We can see that each subset of styles controls meaningful
high-level attributes of the image.

3.2. Stochastic variation

There are many aspects in human portraits that can be
regarded as stochastic, such as the exact placement of hairs,
stubble, freckles, or skin pores. Any of these can be ran-
domized without affecting our perception of the image as
long as they follow the correct distribution.

Let us consider how a traditional generator implements
stochastic variation. Given that the only input to the net-
work is through the input layer, the network needs to invent
a way to generate spatially-varying pseudorandom numbers

(a) (b)

(c) (d)

Figure 5. Effect of noise inputs at different layers of our genera-
tor. (a) Noise is applied to all layers. (b) No noise. (c) Noise in
fine layers only (642 – 10242). (d) Noise in coarse layers only
(42 – 322). We can see that the artificial omission of noise leads to
featureless “painterly” look. Coarse noise causes large-scale curl-
ing of hair and appearance of larger background features, while
the fine noise brings out the finer curls of hair, finer background
detail, and skin pores.

from earlier activations whenever they are needed. This
consumes network capacity and hiding the periodicity of
generated signal is difficult — and not always successful, as
evidenced by commonly seen repetitive patterns in gener-
ated images. Our architecture sidesteps these issues alto-
gether by adding per-pixel noise after each convolution.

Figure 4 shows stochastic realizations of the same un-
derlying image, produced using our generator with differ-
ent noise realizations. We can see that the noise affects only
the stochastic aspects, leaving the overall composition and
high-level aspects such as identity intact. Figure 5 further
illustrates the effect of applying stochastic variation to dif-
ferent subsets of layers. Since these effects are best seen
in animation, please consult the accompanying video for a
demonstration of how changing the noise input of one layer
leads to stochastic variation at a matching scale.

We find it interesting that the effect of noise appears
tightly localized in the network. We hypothesize that at any
point in the generator, there is pressure to introduce new
content as soon as possible, and the easiest way for our net-
work to create stochastic variation is to rely on the noise
provided. A fresh set of noise is available for every layer,
and thus there is no incentive to generate the stochastic ef-
fects from earlier activations, leading to a localized effect.
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(a) Distribution of (b) Mapping from (c) Mapping from
features in training set Z to features W to features

Figure 6. Illustrative example with two factors of variation (im-
age features, e.g., masculinity and hair length). (a) An example
training set where some combination (e.g., long haired males) is
missing. (b) This forces the mapping from Z to image features to
become curved so that the forbidden combination disappears in Z
to prevent the sampling of invalid combinations. (c) The learned
mapping from Z toW is able to “undo” much of the warping.

3.3. Separation of global effects from stochasticity

The previous sections as well as the accompanying video
demonstrate that while changes to the style have global ef-
fects (changing pose, identity, etc.), the noise affects only
inconsequential stochastic variation (differently combed
hair, beard, etc.). This observation is in line with style trans-
fer literature, where it has been established that spatially
invariant statistics (Gram matrix, channel-wise mean, vari-
ance, etc.) reliably encode the style of an image [20, 39]
while spatially varying features encode a specific instance.

In our style-based generator, the style affects the entire
image because complete feature maps are scaled and bi-
ased with the same values. Therefore, global effects such
as pose, lighting, or background style can be controlled co-
herently. Meanwhile, the noise is added independently to
each pixel and is thus ideally suited for controlling stochas-
tic variation. If the network tried to control, e.g., pose using
the noise, that would lead to spatially inconsistent decisions
that would then be penalized by the discriminator. Thus the
network learns to use the global and local channels appro-
priately, without explicit guidance.

4. Disentanglement studies
There are various definitions for disentanglement [54,

50, 2, 7, 19], but a common goal is a latent space that con-
sists of linear subspaces, each of which controls one fac-
tor of variation. However, the sampling probability of each
combination of factors in Z needs to match the correspond-
ing density in the training data. As illustrated in Figure 6,
this precludes the factors from being fully disentangled with
typical datasets and input latent distributions.2

A major benefit of our generator architecture is that the
intermediate latent spaceW does not have to support sam-

2The few artificial datasets designed for disentanglement studies (e.g.,
[43, 19]) tabulate all combinations of predetermined factors of variation
with uniform frequency, thus hiding the problem.

pling according to any fixed distribution; its sampling den-
sity is induced by the learned piecewise continuous map-
ping f(z). This mapping can be adapted to “unwarp”W so
that the factors of variation become more linear. We posit
that there is pressure for the generator to do so, as it should
be easier to generate realistic images based on a disentan-
gled representation than based on an entangled representa-
tion. As such, we expect the training to yield a less entan-
gledW in an unsupervised setting, i.e., when the factors of
variation are not known in advance [10, 35, 49, 8, 26, 32, 7].

Unfortunately the metrics recently proposed for quanti-
fying disentanglement [26, 32, 7, 19] require an encoder
network that maps input images to latent codes. These met-
rics are ill-suited for our purposes since our baseline GAN
lacks such an encoder. While it is possible to add an extra
network for this purpose [8, 12, 15], we want to avoid in-
vesting effort into a component that is not a part of the actual
solution. To this end, we describe two new ways of quanti-
fying disentanglement, neither of which requires an encoder
or known factors of variation, and are therefore computable
for any image dataset and generator.

4.1. Perceptual path length

As noted by Laine [37], interpolation of latent-space vec-
tors may yield surprisingly non-linear changes in the image.
For example, features that are absent in either endpoint may
appear in the middle of a linear interpolation path. This is
a sign that the latent space is entangled and the factors of
variation are not properly separated. To quantify this ef-
fect, we can measure how drastic changes the image under-
goes as we perform interpolation in the latent space. Intu-
itively, a less curved latent space should result in perceptu-
ally smoother transition than a highly curved latent space.

As a basis for our metric, we use a perceptually-based
pairwise image distance [65] that is calculated as a weighted
difference between two VGG16 [58] embeddings, where
the weights are fit so that the metric agrees with human per-
ceptual similarity judgments. If we subdivide a latent space
interpolation path into linear segments, we can define the
total perceptual length of this segmented path as the sum
of perceptual differences over each segment, as reported by
the image distance metric. A natural definition for the per-
ceptual path length would be the limit of this sum under
infinitely fine subdivision, but in practice we approximate it
using a small subdivision epsilon ε = 10−4. The average
perceptual path length in latent space Z , over all possible
endpoints, is therefore

lZ = E
[ 1
ε2
d
(
G(slerp(z1, z2; t)),

G(slerp(z1, z2; t+ ε))
)]

,
(2)

where z1, z2 ∼ P (z), t ∼ U(0, 1), G is the generator (i.e.,
g◦f for style-based networks), and d(·, ·) evaluates the per-
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Method Path length Separa-
full end bility

B Traditional generator Z 412.0 415.3 10.78
D Style-based generator W 446.2 376.6 3.61
E + Add noise inputs W 200.5 160.6 3.54

+ Mixing 50% W 231.5 182.1 3.51
F + Mixing 90% W 234.0 195.9 3.79

Table 3. Perceptual path lengths and separability scores for various
generator architectures in FFHQ (lower is better). We perform the
measurements inZ for the traditional network, and inW for style-
based ones. Making the network resistant to style mixing appears
to distort the intermediate latent spaceW somewhat. We hypothe-
size that mixing makes it more difficult forW to efficiently encode
factors of variation that span multiple scales.

ceptual distance between the resulting images. Here slerp
denotes spherical interpolation [56], which is the most ap-
propriate way of interpolating in our normalized input latent
space [61]. To concentrate on the facial features instead of
background, we crop the generated images to contain only
the face prior to evaluating the pairwise image metric. As
the metric d is quadratic [65], we divide by ε2. We compute
the expectation by taking 100,000 samples.

Computing the average perceptual path length in W is
carried out in a similar fashion:

lW = E
[ 1
ε2
d
(
g(lerp(f(z1), f(z2); t)),

g(lerp(f(z1), f(z2); t+ ε))
)]

,
(3)

where the only difference is that interpolation happens in
W space. Because vectors inW are not normalized in any
fashion, we use linear interpolation (lerp).

Table 3 shows that this full-path length is substantially
shorter for our style-based generator with noise inputs, in-
dicating thatW is perceptually more linear thanZ . Yet, this
measurement is in fact slightly biased in favor of the input
latent space Z . If W is indeed a disentangled and “flat-
tened” mapping of Z , it may contain regions that are not on
the input manifold — and are thus badly reconstructed by
the generator — even between points that are mapped from
the input manifold, whereas the input latent space Z has no
such regions by definition. It is therefore to be expected that
if we restrict our measure to path endpoints, i.e., t ∈ {0, 1},
we should obtain a smaller lW while lZ is not affected. This
is indeed what we observe in Table 3.

Table 4 shows how path lengths are affected by the map-
ping network. We see that both traditional and style-based
generators benefit from having a mapping network, and ad-
ditional depth generally improves the perceptual path length
as well as FIDs. It is interesting that while lW improves in
the traditional generator, lZ becomes considerably worse,
illustrating our claim that the input latent space can indeed
be arbitrarily entangled in GANs.

Method FID Path length Separa-
full end bility

B Traditional 0 Z 5.25 412.0 415.3 10.78
Traditional 8 Z 4.87 896.2 902.0 170.29
Traditional 8 W 4.87 324.5 212.2 6.52
Style-based 0 Z 5.06 283.5 285.5 9.88
Style-based 1 W 4.60 219.9 209.4 6.81
Style-based 2 W 4.43 217.8 199.9 6.25

F Style-based 8 W 4.40 234.0 195.9 3.79

Table 4. The effect of a mapping network in FFHQ. The number
in method name indicates the depth of the mapping network. We
see that FID, separability, and path length all benefit from having
a mapping network, and this holds for both style-based and tra-
ditional generator architectures. Furthermore, a deeper mapping
network generally performs better than a shallow one.

4.2. Linear separability

If a latent space is sufficiently disentangled, it should
be possible to find direction vectors that consistently corre-
spond to individual factors of variation. We propose another
metric that quantifies this effect by measuring how well the
latent-space points can be separated into two distinct sets
via a linear hyperplane, so that each set corresponds to a
specific binary attribute of the image.

In order to label the generated images, we train auxiliary
classification networks for a number of binary attributes,
e.g., to distinguish male and female faces. In our tests,
the classifiers had the same architecture as the discrimina-
tor we use (i.e., same as in [30]), and were trained using the
CELEBA-HQ dataset that retains the 40 attributes available
in the original CelebA dataset. To measure the separability
of one attribute, we generate 200,000 images with z ∼ P (z)
and classify them using the auxiliary classification network.
We then sort the samples according to classifier confidence
and remove the least confident half, yielding 100,000 la-
beled latent-space vectors.

For each attribute, we fit a linear SVM to predict the label
based on the latent-space point — z for traditional and w for
style-based — and classify the points by this plane. We then
compute the conditional entropy H(Y |X) where X are the
classes predicted by the SVM and Y are the classes deter-
mined by the pre-trained classifier. This tells how much ad-
ditional information is required to determine the true class
of a sample, given that we know on which side of the hy-
perplane it lies. A low value suggests consistent latent space
directions for the corresponding factor(s) of variation.

We calculate the final separability score as
exp(

∑
iH(Yi|Xi)), where i enumerates the 40 attributes.

Similar to the inception score [53], the exponentiation
brings the values from logarithmic to linear domain so that
they are easier to compare.

Tables 3 and 4 show that W is consistently better sep-
arable than Z , suggesting a less entangled representation.
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Figure 7. The FFHQ dataset offers a lot of variety in terms of age, ethnicity, viewpoint, lighting, and image background.

Furthermore, increasing the depth of the mapping network
improves both image quality and separability inW , which
is in line with the hypothesis that the synthesis network in-
herently favors a disentangled input representation. Inter-
estingly, adding a mapping network in front of a traditional
generator results in severe loss of separability in Z but im-
proves the situation in the intermediate latent spaceW , and
the FID improves as well. This shows that even the tradi-
tional generator architecture performs better when we in-
troduce an intermediate latent space that does not have to
follow the distribution of the training data.

5. Conclusion
Based on both our results and parallel work by Chen et

al. [6], it is becoming clear that the traditional GAN gen-
erator architecture is in every way inferior to a style-based
design. This is true in terms of established quality metrics,
and we further believe that our investigations to the separa-
tion of high-level attributes and stochastic effects, as well
as the linearity of the intermediate latent space will prove
fruitful in improving the understanding and controllability
of GAN synthesis.

We note that our average path length metric could easily
be used as a regularizer during training, and perhaps some
variant of the linear separability metric could act as one,
too. In general, we expect that methods for directly shaping
the intermediate latent space during training will provide
interesting avenues for future work.
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A. The FFHQ dataset
We have collected a new dataset of human faces, Flickr-

Faces-HQ (FFHQ), consisting of 70,000 high-quality im-
ages at 10242 resolution (Figure 7). The dataset includes
vastly more variation than CELEBA-HQ [30] in terms of
age, ethnicity and image background, and also has much
better coverage of accessories such as eyeglasses, sun-
glasses, hats, etc. The images were crawled from Flickr

ψ = 1 ψ = 0.7 ψ = 0.5 ψ = 0 ψ = −0.5 ψ = −1

Figure 8. The effect of truncation trick as a function of style scale
ψ. When we fade ψ → 0, all faces converge to the “mean” face
of FFHQ. This face is similar for all trained networks, and the in-
terpolation towards it never seems to cause artifacts. By applying
negative scaling to styles, we get the corresponding opposite or
“anti-face”. It is interesting that various high-level attributes of-
ten flip between the opposites, including viewpoint, glasses, age,
coloring, hair length, and often gender.

(thus inheriting all the biases of that website) and automati-
cally aligned [31] and cropped. Only images under permis-
sive licenses were collected. Various automatic filters were
used to prune the set, and finally Mechanical Turk allowed
us to remove the occasional statues, paintings, or photos
of photos. We have made the dataset publicly available at
https://github.com/NVlabs/ffhq-dataset

B. Truncation trick inW

If we consider the distribution of training data, it is clear
that areas of low density are poorly represented and thus
likely to be difficult for the generator to learn. This is a
significant open problem in all generative modeling tech-
niques. However, it is known that drawing latent vectors
from a truncated [42, 5] or otherwise shrunk [34] sampling
space tends to improve average image quality, although
some amount of variation is lost.

We can follow a similar strategy. To begin, we compute
the center of mass ofW as w̄ = Ez∼P (z)[f(z)]. In case of
FFHQ this point represents a sort of an average face (Fig-
ure 8, ψ = 0). We can then scale the deviation of a given
w from the center as w′ = w̄ + ψ(w − w̄), where ψ < 1.
While Brock et al. [5] observe that only a subset of net-
works is amenable to such truncation even when orthogonal
regularization is used, truncation inW space seems to work
reliably even without changes to the loss function.
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C. Hyperparameters and training details

We build upon the official TensorFlow [1] implemen-
tation of Progressive GANs by Karras et al. [30], from
which we inherit most of the training details.3 This original
setup corresponds to configuration A in Table 1. In particu-
lar, we use the same discriminator architecture, resolution-
dependent minibatch sizes, Adam [33] hyperparameters,
and exponential moving average of the generator. We en-
able mirror augmentation for CelebA-HQ and FFHQ, but
disable it for LSUN. Our training time is approximately one
week on an NVIDIA DGX-1 with 8 Tesla V100 GPUs.

For our improved baseline (B in Table 1), we make sev-
eral modifications to improve the overall result quality. We
replace the nearest-neighbor up/downsampling in both net-
works with bilinear sampling, which we implement by low-
pass filtering the activations with a separable 2nd order bi-
nomial filter after each upsampling layer and before each
downsampling layer [64]. We implement progressive grow-
ing the same way as Karras et al. [30], but we start from 82

images instead of 42. For the FFHQ dataset, we switch from
WGAN-GP to the non-saturating loss [22] with R1 regular-
ization [44] using γ = 10. With R1 we found that the FID
scores keep decreasing for considerably longer than with
WGAN-GP, and we thus increase the training time from
12M to 25M images. We use the same learning rates as
Karras et al. [30] for FFHQ, but we found that setting the
learning rate to 0.002 instead of 0.003 for 5122 and 10242

leads to better stability with CelebA-HQ.
For our style-based generator (F in Table 1), we use leaky

ReLU [41] with α = 0.2 and equalized learning rate [30]
for all layers. We use the same feature map counts in our
convolution layers as Karras et al. [30]. Our mapping net-
work consists of 8 fully-connected layers, and the dimen-
sionality of all input and output activations — including z
and w — is 512. We found that increasing the depth of
the mapping network tends to make the training unstable
with high learning rates. We thus reduce the learning rate
by two orders of magnitude for the mapping network, i.e.,
λ′ = 0.01 ·λ. We initialize all weights of the convolutional,
fully-connected, and affine transform layers using N (0, 1).
The constant input in synthesis network is initialized to one.
The biases and noise scaling factors are initialized to zero,
except for the biases associated with ys that we initialize to
one.

The classifiers used by our separability metric (Sec-
tion 4.2) have the same architecture as our discriminator ex-
cept that minibatch standard deviation [30] is disabled. We
use the learning rate of 10−3, minibatch size of 8, Adam
optimizer, and training length of 150,000 images. The
classifiers are trained independently of generators, and the
same 40 classifiers, one for each CelebA attribute, are used

3https://github.com/tkarras/progressive growing of gans
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Figure 9. FID and perceptual path length metrics over the course
of training in our configurations B and F using the FFHQ dataset.
Horizontal axis denotes the number of training images seen by the
discriminator. The dashed vertical line at 8.4M images marks the
point when training has progressed to full 10242 resolution. On
the right, we show only one curve for the traditional generator’s
path length measurements, because there is no discernible differ-
ence between full-path and endpoint sampling in Z .

for measuring the separability metric for all generators. We
will release the pre-trained classifier networks so that our
measurements can be reproduced.

We do not use batch normalization [29], spectral nor-
malization [45], attention mechanisms [63], dropout [59],
or pixelwise feature vector normalization [30] in our net-
works.

D. Training convergence
Figure 9 shows how the FID and perceptual path length

metrics evolve during the training of our configurations B
and F with the FFHQ dataset. With R1 regularization active
in both configurations, FID continues to slowly decrease as
the training progresses, motivating our choice to increase
the training time from 12M images to 25M images. Even
when the training has reached the full 10242 resolution, the
slowly rising path lengths indicate that the improvements
in FID come at the cost of a more entangled representa-
tion. Considering future work, it is an interesting question
whether this is unavoidable, or if it were possible to encour-
age shorter path lengths without compromising the conver-
gence of FID.

E. Other datasets
Figures 10, 11, and 12 show an uncurated set of re-

sults for LSUN [62] BEDROOM, CARS, and CATS, respec-
tively. In these images we used the truncation trick from
Appendix Bwith ψ = 0.7 for resolutions 42 − 322. The
accompanying video provides results for style mixing and
stochastic variation tests. As can be seen therein, in case of

9



Figure 10. Uncurated set of images produced by our style-based
generator (config F) with the LSUN BEDROOM dataset at 2562.
FID computed for 50K images was 2.65.

BEDROOM the coarse styles basically control the viewpoint
of the camera, middle styles select the particular furniture,
and fine styles deal with colors and smaller details of ma-
terials. In CARS the effects are roughly similar. Stochastic
variation affects primarily the fabrics in BEDROOM, back-
grounds and headlamps in CARS, and fur, background, and
interestingly, the positioning of paws in CATS. Somewhat
surprisingly the wheels of a car never seem to rotate based
on stochastic inputs.

These datasets were trained using the same setup as
FFHQ for the duration of 70M images for BEDROOM and
CATS, and 46M for CARS. We suspect that the results for
BEDROOM are starting to approach the limits of the train-
ing data, as in many images the most objectionable issues
are the severe compression artifacts that have been inherited
from the low-quality training data. CARS has much higher
quality training data that also allows higher spatial resolu-
tion (512× 384 instead of 2562), and CATS continues to be
a difficult dataset due to the high intrinsic variation in poses,
zoom levels, and backgrounds.

Figure 11. Uncurated set of images produced by our style-based
generator (config F) with the LSUN CAR dataset at 512 × 384.
FID computed for 50K images was 3.27.
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