
Accelerated Beam Tracing Algorithm

Samuli Laine a Samuel Siltanen a Tapio Lokki a Lauri Savioja a

aTelecommunications Software and Multimedia Laboratory,
Helsinki University of Technology, Espoo, Finland

Abstract

Determining early specular reflection paths is essential for room acoustics model-
ing. Beam tracing algorithms have been used to calculate these paths efficiently,
thus allowing modeling of acoustics in real-time with a moving listener in simple,
or complex but densely occluded, environments with a stationary sound source.
In this paper it is shown that beam tracing algorithms can still be optimized by
utilizing the spatial coherence in path validation with a moving listener. Since the
precalculations required for the presented technique are relatively fast, the acoustic
reflection paths can be calculated even for a moving source in simple cases. Simu-
lations were performed to show how the accelerated algorithm compares with the
basic algorithm with varying scene complexity and occlusion. Up to two orders of
magnitude speed-up was achieved.

Key words: beam tracing
PACS: 43.55.Ka, 43.58.Ta

1 Introduction

Modeling room acoustics at interactive update rates is a great challenge in
virtual reality applications. The most essential task is to find all perceptually
relevant reflection paths, which contribute to the impulse response of the room.
Usually, the early part of the response is considered to be significant, and it
is typically characterized by strong specular reflections. Thus it is necessary
that their reflection paths are computed correctly and efficiently.

Email addresses: Samuli.Laine@tml.hut.fi (Samuli Laine),
Samuel.Siltanen@tml.hut.fi (Samuel Siltanen), Tapio.Lokki@tkk.fi (Tapio
Lokki), Lauri.Savioja@tkk.fi (Lauri Savioja).

Preprint submitted to Elsevier 11 December 2007



The image source method [1,2] has been used to accurately calculate the spec-
ular reflections in a polyhedral environment. Unfortunately, as the order of
reflections increases, the number of modeled image sources grows exponen-
tially, although a large portion of them is invisible. This approach is relatively
simple to implement, but it involves futile work especially in densely occluded
environments. Thus, the image source method is applicable only with sim-
ple geometry or with very low order of reflections, if the goal is to achieve
interactive modeling of room acoustics.

Although the ray tracing methods used in room acoustics modeling are ef-
ficient [3], they produce systematic errors due to the finite number of rays
and the size of the receiver [6]. Thus, some valid early specular reflections
might be omitted while some invalid reflections would be detected, if no pre-
caution were taken to prevent that. This basic approach, enhanced with some
advanced techniques, is commonly used in commercial room acoustics predic-
tion software [4,5]. However, the calculation times are too long for interactive
modeling.

The beam tracing technique is an optimal solution to the problem of finding
the early specular reflections, because it produces exactly the same results as
the image source method, but optimizes the visibility calculation so that only
image sources which are part of a valid reflection path are considered [19].

It is still possible to accelerate the beam tracing algorithm for a moving listener
without affecting its accuracy. In this paper two optimizations are presented
for this purpose. Additionally, unlike in the previous beam tracing algorithms,
the precalculation phase is relatively fast, which allows acoustics modeling
with a moving sound source or even dynamic geometry in simple cases. When
attached to an efficient sound renderer, interactive walkthroughs in complex
acoustic environments are made possible [7]. The optimization could also be
used to accelerate the calculation of the reflection paths for visualization in
acoustics modeling software [4,5].

2 Related Work

The beam tracing technique was first introduced in computer graphics to
utilize the spatial coherence in generating realistic images [8]. Since then this
technique has not been widely utilized in image synthesis due to its limitations.
However, in visibility and occlusion calculations beam tracing algorithms have
been proved to be useful [11,12,14,15]. Yet another area in computer graphics
where beam tracing has been used is calculating light–water interaction [10].

On the other hand, beam tracing is a more generic algorithm in computational

2



geometry [9,20] and it has been successfully applied in calculating very differ-
ent phenomena, such as radio wave propagation [16,18] and acoustic reflection
paths [13,17,19,21–23,25,29].

The most interesting application area from our point of view is real-time acous-
tics modeling of virtual environments [21]. Beam tracing is currently the fastest
of the commonly used geometric room acoustics modeling techniques [30,27]
which still produce accurate results [28].

3 Algorithm

In this paper an efficient beam tracing algorithm, solving the specular re-
flection paths from a source to a receiver, is presented. As in the previously
presented beam tracing techniques, the algorithm consists of a precalculation
phase and a run-time algorithm. In the precalculation phase the beam tree is
constructed, and this structure is utilized in the run-time phase to find the
reflection paths from the source to a moving listener in real-time. The pre-
calculation has to be repeated whenever the geometry changes or the sound
source moves. In complex cases this can take a long time, but with the pre-
sented technique the calculation can be repeated often enough to model a
moving source with simple room models. The precalculation phase does not
do accurate visibility calculations and is thus more efficient compared to other
acoustic beam tracing algorithms [21]. This is justified by the presented opti-
mizations which allow the run-time algorithm to eventually skip most of the
visibility calculations.

3.1 Precalculation

In the precalculation phase the polygonal geometry is first inserted into a
binary space partitioning (BSP) tree [31]. The polygons are assumed to be
convex, and concave polygons can be clipped into convex parts. In the pre-
sented implementation the split planes in the tree are chosen to be axially
aligned and the structure resembles a kd–tree [32]. However, the split plane
orientations do not rotate regularly, but the orientations are determined by
the surface area heuristic to create a balanced tree [34]. This is the accelera-
tion structure used in calculations involving the room geometry, and it allows
performing most of the geometric operations in sublinear time instead of linear
time. Similar tree structures are commonly used in computer graphics when
handling complex geometry [33].

The main goal of the precalculation phase is to create a beam tree. This imple-

3



mentation is similar to the other beam tracing algorithms [19,21,22,25,29], but
there are some differences which allow the presented optimization techniques
to be utilized. Thus, the implementation is briefly covered here.

The beam tree is a tree structure where the root node corresponds to the sound
source. Each child of the root node is a beam defined by the sound source and
a polygon. Consequently, there are as many children at the first level as there
are polygons in the scene. Occlusion is not taken into account in this structure
since the benefits of accurate visibility calculations would be outweighed by the
complexity of the resulting structure in most cases. In addition, postponing the
visibility calculations to the run-time algorithm speeds up the precalculation
phase, and, eventually, the majority of the visibility checks are never performed
since the presented optimizations prune the calculation earlier in the beam
tree.

Each beam is further reflected with the plane of their defining polygon such
that the new beam is defined by the image source of that plane and the
polygon. The polygons intersecting the reflected beam are determined and new
beams are defined by the current image source and the intersecting polygons.
If a polygon is only partially within the beam, it is clipped against the beam,
and the clipped polygon is used in the beam tree construction instead of the
original one. These beams form the next level of the beam tree. Again, the
occlusion testing is not necessary. Figure 1 illustrates the process of creating
beams. The beams are reflected and the child nodes are created up to the
desired depth which corresponds to the maximum order of reflections in the
image source method.

Calculating this structure is a relatively efficient operation since the BSP al-
lows fast intersection testing, and accurate cutting or pruning of the beams
due to occlusion tests is not necessary in this phase. A conservative approxima-
tion is sufficient or even better than the accurate structure since the branching
factor of the tree would increase if the polygons were split often. While the
order of reflections increases the beams become narrower thus intersecting less
polygons. This is why the branching factor of the beam tree decreases in re-
lation to the depth, and the problem of exponential growth is not nearly as
bad as in the image source method.

To save memory only the polygon IDs defining the beams are stored per node.
Other information can be retrieved during the run-time calculation.

3.2 Run-time

The goal of the run-time part of the algorithm is to extract quickly the in-
formation of the potential reflection paths and to validate them. This process

4



yields the accurate specular reflection paths up to the desired order of reflec-
tions. For a static listener the basic algorithm is sufficient, but for a moving
listener the process must be accelerated. Thus, two novel optimization tech-
niques are introduced, i.e. fail plane and skip sphere optimizations.

3.2.1 Basic algorithm

The first step is to find the potential reflection paths for the listener. Because
only the polygon IDs are saved in the beam tree, there is not enough infor-
mation to determine in which beams the listener is located. Thus, initially all
leaf nodes in the beam tree correspond to the potential reflection paths. The
tree must be traversed to validate them and thus collect the actual reflection
paths.

To validate a reflection path, the image sources are reconstructed by reflecting
the source with each polygon in the path. The reconstruction is done while
traversing the beam tree to avoid calculating the same image sources several
times for different paths. In the path validity test the tree is traversed upwards
while testing each path segment for intersections. The first segment is the path
from the listener to the image source of the current leaf node polygon. The
next segment is from the intersection point of the previous segment and the
current beam tree polygon to the image source of the parent beam tree node
polygon. The beam tree is traversed upwards until the root is reached. Thus,
the final segment is from the last intersection point to the source. This process
corresponds to the one used to validate the paths in the image source method.
Figure 2 illustrates the validation process.

The actual test is performed by an efficient ray tracer which utilizes the BSP
acceleration structure. There are two criteria a valid segment of the path must
fulfill. The first one is that the ray from the current point to the current image
source must intersect the beam polygon. The second one is that there must not
be occluders in the path from the current point to the intersection point on the
polygon. The first one is a trivial geometrical test independent of the occluding
geometry, while the second one requires a ray cast which is performed only
if the first test is passed. As soon as an invalid segment is found the whole
path is considered invalid and no further testing is required. If the path is
intersecting all the beam tree polygons up to the root level, and there are no
occluders in the path, then the reflection path is valid, and it can be added to
the solution.

3.2.2 Fail-plane optimization

The basic algorithm described above can be accelerated significantly for a
moving listener. Testing whether a segment of the path intersects a polygon

5



can be seen as testing whether the starting point of the segment is inside the
beam defined by the current image source and beam tree polygon. Another
formulation for the convex beam is a collection of planes which border the
beam volume. The planes are defined by the image source and edges of the
beam tree polygon. The test can be done by comparing on which side of the
planes the starting point of the segment is. This requires only one dot product
per plane. When a test against such a plane fails, the whole path is considered
invalid. In addition, the information acquired in this test can be utilized in
the subsequent tests for this beam tree node and for the whole path down to
the tree rooted from there. The plane against which the test failed, or the fail
plane, is propagated down the path by reflecting it with the polygon planes
and stored in the beam tree node. When the listener moves, it is enough to test
the listener location against the stored fail plane to know if the same point vs.
plane test in the same validation step would fail again. Figure 3 shows the fail
plane of a second order reflection. This optimization tends to give the negative
result early for invalid paths.

There are two kinds of fail planes. In addition to the beam planes, the planes
of the beam tree polygons themselves can become fail planes. This happens
when the segment is entirely on one side of that plane, as shown in Fig. 4.
It is better to test this before testing against the beam planes, so that in the
case of a negative result, creating the beam becomes unnecessary. The plane
of the polygon is similarly propagated down the path in the beam tree as a
fail plane.

Transforming the segment intersection tests into beam plane tests requires
still an additional test phase to validate the path for occlusion. This can be
done by an efficient ray tracer as in the basic algorithm. The number of ray
tracer calls is far reduced by the plane tests.

3.2.3 Skip sphere optimization

Another optimization method is grouping the potential reflection path nodes
in buckets. A small number of neighboring BSP-nodes is placed into a bucket.
The first time, every node in the bucket goes through the validation test. In
the case all nodes fail, it is easy to calculate the distances from the listener
to the propagated fail planes. Both the smallest distance and the current
listener position are stored in the bucket. These values define the radius and
the center of a skip sphere. It is guaranteed that if the listener stays inside the
skip sphere the paths in the bucket remain invalid. Thus, the test against a
number of planes in several paths is replaced by a very quick test against a
sphere. In Fig. 5 the skip sphere corresponding to a fail plane is shown. When
the listener moves out of the skip sphere the situation is updated. At least
one path in the bucket has become potentially valid, and all the nodes must

6



be tested as in an unfailed bucket.

Choosing a proper size for the bucket is crucial. With a small bucket the gain
is smaller, because there are less paths per bucket which can be skipped when
the test against the skip sphere fails. On the other hand, if the bucket is larger
it is more unlikely that all paths in the bucket are invalid. In the presented
implementation bucket size 16 proved to be the most efficient with the test
models introduced in the results section.

Both of these optimizations of the basic beam tracing algorithm utilize the
concept of a fail plane. Propagating the fail planes down the beam tree cuts
the tests for the invalid paths early. An efficient ray tracer is still needed to
validate the paths for occlusion, but even then the number of tests is reduced
by these optimization techniques.

4 Results

Both the precalculation phase and the run-time algorithm were tested and
their update times were recorded with six different room models ranging from
a cube to a complex concert hall and auditorium models. The models can be
seen in Fig. 6. All the tests were run on a computer with an Intel P4 2.8 GHz
processor and 1 Gb RAM.

The times taken by the precalculation phase are given in Table 1. It can be
noticed that with simple models and low order of reflections the precalcula-
tion can be done at interactive rates, which allows also moving sound sources
and changing geometry. By interactive rates, an update rate of about 30 Hz
of reflection parameters is meant [35]. However, the precalculation time rises
rapidly when the order of reflections grows. It can be seen that the precalcula-
tion time does not depend only on the number of polygons and the reflection
order since there is a significant difference between the concert hall model
and the auditorium model, although their polygon counts do not differ much.
Closer examination of the models shows that there are some very densely
occluded parts in the auditorium model which makes the beam tree more
complicated than the one constructed using the concert hall model.

The run-time algorithm was tested with and without the optimizations using
third order reflections. An exception is the most complex model in which case
only second order reflections were used. The source was stationary while the
listener was moving along a predefined path. The performance results can be
seen in Table 2.

On average, the fail plane optimization makes the algorithm approximately 40

7



times faster than the unoptimized version. In addition, the skip spheres still
cut the calculation time by a factor of 50 percent. The results show that a
model consisting of 1190 polygons can be simulated for real-time auralization
upto third order at an interactive rate [35].

The reflection paths produced by the optimized versions of the algorithm were
compared to those computed by the unoptimized algorithm. The paths were
identical and thus it is safe to conclude that the quality of the results is not
affected by the optimizations.

5 Possible Extensions and Future Work

There are also other possibilities for optimization. Although the occlusion
calculation is postponed in the run-time algorithm as long as possible, they
could be utilized in the precalculation phase to conservatively prune the beam
tree [19], since in densely occluded models most polygons are not visible to
others at all. On the other hand, this would increase the precalculation time,
and modeling with a moving source would not be possible anymore. The target
application determines whether pruning the beam tree is tolerated or not.

Currently the algorithm supports only specular reflections, which are impor-
tant in the early part of the response. It would be possible to extend the
algorithm to handle diffraction [25]. A beam can be defined by a diffracting
edge and a polygon. Such a beam is still convex and can be represented by
a collection of planes similarly to a beam in the case of a specular reflection.
This representation is sufficient for using the fail plane and skip sphere opti-
mizations. Only in the validation phase more effort is required since the actual
reflection points on the diffracting edges have to be calculated. An iterative
approach using, e.g. the Newton method, is probably efficient enough.

6 Conclusions

An optimized beam tracing algorithm for finding and efficiently updating spec-
ular reflection paths for a moving listener is presented. This algorithm performs
well even with complex, lightly occluded room models. It is shown that even
a moving sound source can be modeled at interactive rates with moderate
model complexity. The proposed optimizations are based on the concept of a
propagated fail plane. Utilizing the optimization techniques allows returning
the negative results for validated paths quickly. Because most of the results
are negative, this speeds up the computation significantly. The bucketing op-
timization utilizes the local coherence in the validation results. Together these

8



optimizations can give a two-orders-of-magnitude speed-up compared to the
unoptimized algorithm.

Acknowledgments

T. Lokki’s work was supported by the Academy of Finland (#119092).

References

[1] Allen JB, Berkley DA. Image method for efficiently simulating small-room
acoustics. Journal of the Acoustical Society of America 1979;65(4):943-950.

[2] Borish J. Extension of the image model to arbitrary polyhedra. Journal of the
Acoustical Society of Americca 1984;75(6):1827-1836.

[3] Krokstad A, Strom S, Sorsdal S. Calculating the acoustical room response by the
use of a ray tracing technique. Journal of Sound and Vibration 1968;8(1):118-
125.

[4] Naylor GM. ODEON - Another hybrid room acoustical model. Applied
Acoustics 1993;38:131-143.

[5] Dalenbäck BI. Room acoustic prediction based on a unified treatment of
diffuse and specular reflection. Journal of the Acoustical Society of America
1996;100(2):899-909.

[6] Lehnert H. Systematic errors of the ray-tracing algorithm. Applied Acoustics
1993;38(2-4):207-221.

[7] Savioja L, Huopaniemi J, Lokki T, Väänänen R. Creating interactive virtual
acoustic environments. Journal of the Audio Engineering Society 1999;47:675-
705.

[8] Heckbert PS, Hanrahan P. Beam tracing polygonal objects. ACM SIGGRAPH
Computer Graphics 1984;18(3):119-127.

[9] Dadoun N, Kirkpatrick DG, Walsh JP. The geometry of beam tracing.
Proceedings of the first annual symposium on Computational geometry 1985:55-
61.

[10] Watt M. Light-water interaction using backward beam tracing. ACM
SIGGRAPH Computer Graphics 1990;24(4):377-385.

[11] Teller SJ. Visibility computations in densely occluded polyhedral environments.
Ph.D. thesis, University of California at Berkeley, 1992.

9



[12] Teller SJ. Computing antipenumbra of an area light source. ACM SIGGRAPH
Computer Graphics 1992;26(2):139-148.

[13] Lewers T. A combined beam tracing and radiant exchange computer model of
room acoustics. Applied Acoustics 1993;38(2-4):161-178.

[14] Teller SJ, Hanrahan P. Global visibility algorithms for illumination
computations. Proceedings of the 20th annual conference on Computer graphics
and interactive techniques 1993:239-246.

[15] Luebke D, Georges C. Portals and mirrors: simple, fast evaluation of potentially
visible sets. Proceedings of the 1995 symposium on Interactive 3D graphics
1995:105-106.

[16] Fortune S. A beam-tracing algorithm for prediction of indoor radio propagation.
Selected papers from the Workshop on Applied Computational Geometry,
Towards Geometric Engineering 1996:157-166.

[17] Monks MC, Oh BM, Dorsey J. Acoustic simulation and visualization using a
new unified beam tracing and image source apporach. 101th Convention of the
Audio Engineering Society 1996, preprint 4335.

[18] Rajkumar A, Naylor BF, Feisullin F, Rogers L. Predicting RF coverage in
large environments using ray-beam tracing and partitioning tree representated
geometry. Wireless Networks 1996;2(2):143-154.

[19] Funkhouser TA, Carlbom I, Elko G, Pingali G, Sondhi M, West JE. A beam
tracing approach to acoustic modeling for interactive virtual environments.
Proceedings of the 25th annual conference on Computer graphics and interactive
techniques 1998:21-32.

[20] Fortune S. Topological beam tracing. Proceedings of the fifteenth annual
symposium on Computational geometry 1999:59-68.

[21] Funkhouser TA, Min P, Carlbom I. Real-time acoustic modeling for distributed
virtual environments. Proceedings of the 26th annual conference on Computer
graphics and interactive techniques 1999:365-374.

[22] Funkhouser TA. A visibility algorithm for hybrid geometry- and image-based
modeling and rendering. Computers & Graphics 1999;23(5):719-728.

[23] Drumm IA, Lam YW. The adaptive beam tracing algorithm. Journal of the
Acoustical Society of America 2000;107(3):1405-1412.

[24] Min P, Funkhouser TA. Priority-driven acoustic modeling for virtual
environments. Proceedings of EUROGRAPHICS’2000 2000.

[25] Tsingos N, Funkhouser TA, Ngan A, Carlbom I. Modeling acoustics in virtual
environments using the uniform theory of diffraction. Proceedings of the 28th
annual conference on Computer graphics and interactive techniques 2001:545-
552.

10



[26] Funkhouser TA, Tsingos N, Carlbom I, Elko G, Sondhi M, West JE. Modeling
sound reflection and diffraction in architectural environments with beam
tracing. Forum Acusticum 2002.

[27] Svensson UP, Kristianssen UR. Computational modeling and simulation of
acoustic spaces. AES 22nd international conference on Virtual, synthetic and
entertainment audio, Espoo, Finland, June 15-17 2002:11-30.

[28] Tsingos N, Carlbom I, Kubli R, Funkhouser TA. Validating acoustical
simulations in the Bell Labs Box. Computers & Graphics 2002;22(4):28-37.

[29] Funkhouser TA, Tsingos N, Carlbom I, Elko G, Sondhi M, West JE, Pingali G,
Min P, Ngan A. A beam tracing method for interactive architectural acoustics.
Journal of the Acoustical Society of America 2004;115(2):739-756.

[30] Funkhouser TA, Tsingos N, Jot JM. Sounds good to me! Computational soound
for graphics, VR, and interactive systems. SIGGRAPH 2002 Course Notes.

[31] Fuchs H, Kedem ZM, Naylor BF. On visible surface generation by a priori tree
structures. ACM SIGGRAPH Computer Graphics 1980;14(3):124-133.

[32] Bentley JL. Multidimensional binary search trees used for associative searching.
Communications of the ACM 1975;18(9):507-517.

[33] Samet H. The design and analysis of spatial data structures. Addison-Wesley,
1990.

[34] Havran V. Heuristic ray shooting algorithms. Ph.D. thesis, Czech Technical
University in Prague, 2000.

[35] Lokki T, Savioja L, Huopaniemi J, Väänänen R, Takala T. Creating interactive
virtual auditory environments. IEEE Computer Graphics and Applications
2002;22(4):49-57.

11



Table 1
For each of the six test models, the precalculation was done for 1st–6th order reflec-
tions. The beam tree took too much memory with higher order reflections in some
models, which is why the results are not given in such cases.

Order

Model Polygons 1st 2nd 3rd 4th 5th 6th

(s) (s) (s) (s) (s) (s)

Cube 6 0.0001 0.0005 0.0022 0.010 0.030 0.0525

Simple Room 438 0.0033 0.130 1.57 12.41 85.99 449

Regular Room 1190 0.0094 0.950 20.93 294 - -

Complex Room 5635 0.047 4.96 77.0 549 2824 -

Concert Hall 12115 0.130 12.5 325 - - -

Auditorium 14472 0.143 91.2 - - - -

Table 2
For each test model the third order reflections were calculated, except for the audi-
torium model for which only second order refletions could be calculated, while the
listener was moving along a predefined path around the source. The average num-
ber of reflections as well as the calculation time for the algorithm are given without
optimizations (NO), with fail plane (FP) optimization only, and with both the fail
plane optimization and skip spheres (FP + SS). The values given in parentheses are
speed-up factors compared to the version without the optimization.

Model Polygons Reflections NO FP FP + SS

(s) (s) (s)

Cube 6 63.0 0.0014 0.0008 (1.75) 0.0008 (1.75)

Simple Room 438 45.5 0.358 0.009 (39.8) 0.004 (59.7)

Regular Room 1190 34.1 3.03 0.057 (53.2) 0.019 (160)

Complex Room 5635 28.5 5.29 0.114 (46.4) 0.048 (110)

Concert Hall 12115 35.8 38.2 0.943 (40.5) 0.489 (78.2)

Auditorium 14472 8.78 21.1 0.475 (44.4) 0.229 (91.9)

12



List of Figures

1 Source S and polygon P1 define the root level beam B which
is not explicitly stored in the beam tree since it can be easily
reconstructed whenever needed. Source S is mirrored at a plane
of polygon P1 to create the first level image source IS(1).
IS(1) and P1 define the first level beam B′ which is stored as
a child node of the root in the beam tree. Only the ID of P1
is stored since IS(1) can be reconstructed at run-time. Beam
B′ intersects polygon P2, which leads to mirroring IS(1) at
the plane of polygon P2 yielding the second level image source
IS(1, 2). In addition, polygon P2 is clipped by beam B′. P2′ is
the clipped polygon inside the beam. IS(1, 2) and polygon P2′

define a second level beam B′′ which becomes a child node of
the node defining B′. Again, only the ID of the polygon P2
needs to be stored. Note that, since beam B′ intersects polygon
P2 only partially, beam B′′ is clipped accordingly, the dotted
line showing what would be the unclipped beam. 15

2 To validate the path from source S to listener L via polygons
P1 and P2, the path is tested segment by segment, beginning
from listener L. At first, a ray is shot from listener L towards
image source IS(1, 2). The intersection point of the ray
with polygon P2 is X. If there are no intersections with
other polygons in the segment L → X, the first segment is
valid. Then, the next segment is validated by shooting a ray
from intersection point X towards image source IS(1). The
intersection point with polygon P1 is Y , and segment X → Y

is tested for intersections with occluders. The last test is
from the intersection point Y to source S. Since there are no
occluders, path S → Y → X → L is a valid reflection path. 16

13



3 The path segment validity test concerning polygon P2 has
passed, and the next segment to be tested is the one from the
intersection point X on polygon P2 towards image source
IS(1). The test is performed by testing point X against the
planes defining beam B′. Since the point is on the wrong side
of plane FP , the test fails, and FP becomes the fail plane.
The fail plane is propagated down the beam tree by mirroring it
against the plane of polygon P2 which yields plane FP ′. When
the listener is updated the next time, the testing begins by
comparing the listener position against plane FP ′, and while
it is on the wrong side, the rest of the tests can be skipped.
The wrong sides of FP and FP ′ are indicated by the arrows
normal to the fail planes. 17

4 If the segment to be tested is entirely on one side of the plane of
the polygon defining the beam, there cannot be a reflection. The
segment from intersection point X towards image source IS(1)
is entirely behind the plane of polygon P1. Thus, that plane
FP becomes the fail plane and it is not necessary to construct
the planes for beam B′ for further tests. The propagated fail
plane around the plane of polygon P2 is not shown since it is
the same as the original fail plane in this particular case. 18

5 Assume that in this case all the paths (not shown in the
figure) in the bucket have returned negative results and that
the corresponding fail planes have been propagated (dashed
lines). Hence the distances from the listener to all the fail
planes are calculated and the shortest one is chosen. Here it is
the distance to fail plane FP ′. By using that distance as the
radius and the current listener position L as the center, the
skip sphere SS can be created for the bucket. While the listener
stays inside SS the whole bucket of paths can be skipped. 19

6 The models used in performance tests: a) box, b) simple room,
c) regular room, d) complex room, e) concert hall, and f)
auditorium. 20

14



Fig. 1. Source S and polygon P1 define the root level beam B which is not explicitly
stored in the beam tree since it can be easily reconstructed whenever needed. Source
S is mirrored at a plane of polygon P1 to create the first level image source IS(1).
IS(1) and P1 define the first level beam B′ which is stored as a child node of the
root in the beam tree. Only the ID of P1 is stored since IS(1) can be reconstructed
at run-time. Beam B′ intersects polygon P2, which leads to mirroring IS(1) at
the plane of polygon P2 yielding the second level image source IS(1, 2). In addition,
polygon P2 is clipped by beam B′. P2′ is the clipped polygon inside the beam. IS(1, 2)
and polygon P2′ define a second level beam B′′ which becomes a child node of the
node defining B′. Again, only the ID of the polygon P2 needs to be stored. Note that,
since beam B′ intersects polygon P2 only partially, beam B′′ is clipped accordingly,
the dotted line showing what would be the unclipped beam.

15



Fig. 2. To validate the path from source S to listener L via polygons P1 and P2,
the path is tested segment by segment, beginning from listener L. At first, a ray is
shot from listener L towards image source IS(1, 2). The intersection point of the
ray with polygon P2 is X. If there are no intersections with other polygons in the
segment L → X, the first segment is valid. Then, the next segment is validated by
shooting a ray from intersection point X towards image source IS(1). The intersec-
tion point with polygon P1 is Y , and segment X → Y is tested for intersections with
occluders. The last test is from the intersection point Y to source S. Since there are
no occluders, path S → Y → X → L is a valid reflection path.

16



Fig. 3. The path segment validity test concerning polygon P2 has passed, and the
next segment to be tested is the one from the intersection point X on polygon P2
towards image source IS(1). The test is performed by testing point X against the
planes defining beam B′. Since the point is on the wrong side of plane FP , the test
fails, and FP becomes the fail plane. The fail plane is propagated down the beam
tree by mirroring it against the plane of polygon P2 which yields plane FP ′. When
the listener is updated the next time, the testing begins by comparing the listener
position against plane FP ′, and while it is on the wrong side, the rest of the tests
can be skipped. The wrong sides of FP and FP ′ are indicated by the arrows normal
to the fail planes.

17



Fig. 4. If the segment to be tested is entirely on one side of the plane of the polygon
defining the beam, there cannot be a reflection. The segment from intersection point
X towards image source IS(1) is entirely behind the plane of polygon P1. Thus, that
plane FP becomes the fail plane and it is not necessary to construct the planes for
beam B′ for further tests. The propagated fail plane around the plane of polygon P2
is not shown since it is the same as the original fail plane in this particular case.

18



Fig. 5. Assume that in this case all the paths (not shown in the figure) in the bucket
have returned negative results and that the corresponding fail planes have been prop-
agated (dashed lines). Hence the distances from the listener to all the fail planes
are calculated and the shortest one is chosen. Here it is the distance to fail plane
FP ′. By using that distance as the radius and the current listener position L as the
center, the skip sphere SS can be created for the bucket. While the listener stays
inside SS the whole bucket of paths can be skipped.

19



Fig. 6. The models used in performance tests: a) box, b) simple room, c) regular
room, d) complex room, e) concert hall, and f) auditorium.

20


