
Improved Dual-Space Bounds for Simultaneous Motion and Defocus Blur

Samuli Laine Tero Karras

NVIDIA Research∗

Abstract

Our previous paper on stochastic rasterization [Laine et al. 2011]
presented a method for constructing time and lens bounds to ac-
celerate stochastic rasterization by skipping the costly 5D coverage
test. Although the method works for the combined case of simul-
taneous motion and defocus blur, its efficiency drops when signifi-
cant amounts of both effects are present. In this paper, we describe
a bound computation method that treats time and lens domains in a
unified fashion, and yields tight bounds also for the combined case.

1 Extended Dual Space

In previous work [Laine et al. 2011], time and lens bounds were
considered separately, and in order to guarantee correctness, both
of these domains had to be conservative with respect to the other.
In other words, the lens bounds had to be valid for all instants of
time, and the time bounds had to be valid for all lens positions. In
situations where significant amounts of both effects occur simulta-
neously, this decreases the sample test efficiency (STE).

Treating the time and lens domains in a unified fashion lets us derive
tight bounds even when both effects occur simultaneously. It also
simplifies the overall algorithm.

We extend the dual-space idea of previous work into three dimen-
sions. As before, the construction is based on parallel projection of
a vertex onto camera plane, illustrated in Figure 1. The position of
the projected point on camera plane is δx (resp. δy), and it is defined
as a function of projection direction γx (resp. γy), lens position u
(resp. v), and time t.

As before, the projection formulas are

δx = x′ − w′ · γx
δy = y′ − w′ · γy

where

x′ = (1− t) · (x0 + u · c0) + t · (x1 + u · c1)
y′ = (1− t) · (y0 +A · v · c0) + t · (y1 +A · v · c1)
w′ = (1− t) · w0 + t · w1

Here, A is a constant scaling factor for making the circles of
confusion circular regardless of viewport aspect ratio. As such,
δx(γx, u, t) and δy(γy, v, y) are trilinear functions of their param-
eters. This is a crucial property, because it allows us to easily con-
struct bounding functions for a group of δ functions corresponding
to the vertices of a primitive.

∗e-mail: {slaine,tkarras}@nvidia.com

NVIDIA Technical Report NVR-2011-004, November 2011.
c© NVIDIA Corporation. All rights reserved.

}

γx

δx(γx,u,t)

+1-1

x

w

v , c1 1

}

u v(t,u)
t

v , c0 0

Figure 1: Parallel projection of a point as the basis of the dual
space, illustrated here for horizontal axis only. A vertex has posi-
tion v0 and clip-space circle of confusion c0 at t = 0, and similarly
v1 and c1 at t = 1. Value δx(γx, u, t) is obtained by applying lens
coordinate u at t = 0 and t = 1, interpolating linearly according
to t, and projecting onto camera plane in direction γx.

2 Algorithm

In total, we form four bounding functions corresponding to
min/max δ in horizontal direction, and similarly for vertical direc-
tion. Let us consider the maximum horizontal bound for a prim-
itive. For this bound, the criterion that the primitive may overlap
a screen-space point corresponding to projection direction γx with
given (u, t) is that δx > 0 for at least one vertex.1 Therefore, to test
all vertices of a primitive, we can take the maximum δx of all ver-
tices before performing the comparison. Conversely, for minimum
bound in horizontal direction we need the minimum δx.

Each vertex of the primitive defines individual δx(γx, u, t) and
δy(γy, v, t) functions. For example, assume we need to find the
maximum of a number of δx functions in some axis-aligned re-
gion of γx, u, t space. Since each of these functions is trilinear,
we can represent them by their values at the eight corners of this
region. By taking the maximum value of each of these δx func-
tions at the corners, we obtain a trilinear function that bounds the
given δx functions from above. In this fashion, we construct tri-
linear approximations for minimum and maximum δ functions for
horizontal and vertical directions.

For u, v and t it is sufficient to assume full ranges when construct-
ing the bounding δ function approximations, but for γ we determine
a conservative range as described below in Section 2.2. The eight
corners where the functions are evaluated in order to construct the
approximating trilinear functions are therefore the combinations of
γx ∈ {γxmin, γxmax}, u ∈ {−1,+1}, and t ∈ {0, 1} for δx, and
similarly for the vertical direction.

Still focusing on the maximum horizontal bound for the primitive,
we compute the eight δx function values at the aforementioned cor-
ners, the value in each corner being the maximum of the δx func-
tions of the individual vertices evaluated at this point. To test an
individual sample against this bound, we could interpolate between

1It is also necessary that δx < 0 for at least one vertex. This is handled
by the minimum horizontal bound.

1

γx

u

t

Figure 2: Illustration of the u, t slicing. The large box is the entire
γx, u, t space, and the shaded blue region is the volume bounded
by γx range computed for the primitive. The values of the approx-
imating trilinear δx functions are determined at the points denoted
by red dots. To accelerate the testing of individual sampling points
against the bounds, we extract a slice (green rectangle) according
to the γx of a pixel tile by interpolating the corner values of the
volume along γx axis.

t

u

δ > 0

δ < 0

Figure 3: A slice of the trilinear approximate δx is a bilinear func-
tion in u, t space. Testing the sign allows us to skip the 5D coverage
tests for individual samples according to their u, t coordinates. In
contrast to the previous method ([Laine et al. 2011]), this approach
captures the combined effects of time and lens coordinates.

these δx values according to the γx, u, t coordinates of the sample,
and compare the result against zero. However, this would be quite
expensive, requiring four trilinear interpolations per sample in total
(accounting for minimum/maximum horizontal/vertical bounds).

2.1 Per-tile slicing

A better strategy is to amortize part of the computation by extract-
ing a slice of the γx, u, t volume that corresponds to a given pixel
tile, as illustrated in Figure 2. By fixing γx, we obtain a bilinear
slice in u, t space (Figure 3). An obvious problem is that the pixel
tile does not correspond to a single γx value but a (small) range
according to tile extents. This can be remedied by evaluating the
corners of the bilinear slice at both minimum and maximum γx of
the tile and taking the minimum or maximum result according to
the direction of approximation.

This can be further optimized by noting that depending on the sign
of the slope of δx along γx (i.e., ∂δx(γx, u, t)/∂γx) for any given
u, t corner, we always pick either the value at either the smaller or
greater γx, because the slope is constant when u and t are fixed.
Therefore, assuming that the tile size is fixed, we can bias the
δx values of each γx-oriented edge of the volume so that inter-
polating at, e.g., the center of tile always gives the desired mini-

function GetGammaRanges(vertex v[N])
1: (xmin, xmax, ymin, ymax)← (+∞,−∞,+∞,−∞)
2: (x̃min, x̃max, ỹmin, ỹmax)← (+∞,−∞,+∞,−∞)
3: for each v do
4: for i ∈ {0, 1} do
5: (x, y, cx)← (v.xi, v.yi, v.ci)/v.wi

6: cy ← A · cx
7: if v.wi ≥ 0 then
8: xmin ← min (xmin , x− |cx|)
9: xmax ← max(xmax, x+ |cx|)

10: ymin ← min (ymin , y − |cy|)
11: ymax ← max(ymax, y + |cy|)
12: else
13: x̃min ← min (x̃min , x− |cx|)
14: x̃max ← max(x̃max, x+ |cx|)
15: ỹmin ← min (ỹmin , y − |cy|)
16: ỹmax ← max(ỹmax, y + |cy|)
17: end if
18: end for
19: end for
20: if xmin < x̃max then xmin ← −1
21: if xmax > x̃min then xmax ← +1
22: if ymin < ỹmax then ymin ← −1
23: if ymax > ỹmin then ymax ← +1
24: xmin ← max(xmin ,−1)
25: xmax ← min (xmax,+1)
26: ymin ← max(ymin ,−1)
27: ymax ← min (ymax,+1)
28: return (xmin, xmax, ymin, ymax)

Figure 4: Pseudocode for computing horizontal and vertical γ
ranges (i.e., screen-space bounding rectangle) that are valid for the
entire u, v, t range, and that extend to the edge of the screen where
appropriate. The idea is to keep track of two bounding rectangles,
one in front of (lines 8–11) and one behind (lines 13–16) the cam-
era. The latter is used for extending the front bounding rectangle
to the edge of the screen in the directions where the primitive may
cross the camera plane (lines 20–23). The surprising-looking in-
dexing is due to back rectangle being inverted. Lines 24–27 clamp
the γ ranges to the screen extents.

mum/maximum result for that corner.

With this per-primitive optimization, we can extract the four con-
servatively correct slices for a given pixel tile using 16 one-
dimensional linear interpolations in total. Testing whether the 5D
coverage test of an individual sample can be skipped requires four
two-dimensional bilinear interpolations, one for each of the mini-
mum/maximum horizontal/vertical bounds.

In addition to the bounding test, we calculate an approximate t span
for detecting when the primitive may be inside the view frustum,
and use this to cull samples with t outside this range. This is identi-
cal to the previous method, and improves efficiency in cases where
geometry lies behind the camera for some duration of the frame
time.

2.2 Determining γ range

The ranges for γ are obtained in a similar fashion as in the pre-
vious method, i.e., from the extents of the screen-space bounding
rectangle for the primitive. These ranges have to cover the entire
u, v, t range. As before, we need to detect where the primitive
may cross the camera plane and extend the γ ranges to the edges
of the screen in those directions. In the previous paper, we de-
scribed a sweep-line algorithm for detecting these crossings, but

2

Scene Bbox [Laine et New
scan al. 2011] method

CONAN 23.6 23.6 23.6
motion 2.7 23.7 23.7
motion ×2 1.3 24.0 24.0
defocus 1.7 23.1 23.6
defocus ×2 0.7 21.9 23.5
both 0.7 5.6 23.7
both ×2 0.4 2.9 23.7

Table 1: Sample test efficiency results in the CONAN test scene
(see the cited paper for images). The top row refers to static case
without motion or defocus blur. There is marked improvement in
cases with both motion and defocus blur occurring at the same time
(the bottom two rows).

Figure 4 shows an equivalent and conceptually simpler method.
Whereas the previous method required separate bounding rectan-
gles for minimum/maximum lens corners, we only need one con-
servative bounding rectangle.

3 Results

Table 1 gives the sample test efficiency (STE) percentages in one
of the test scenes of the previous paper using the naive brute-force
method, the previously presented method, and the new method de-
scribed in this paper. It can be seen that the STE of the new method
does not depend on the amount of motion or defocus blur, even
when they occur at the same time.

References

LAINE, S., AILA, T., KARRAS, T., AND LEHTINEN, J. 2011.
Clipless dual-space bounds for faster stochastic rasterization.
ACM Trans. Graph. 30, 4, 106:1–106:6.

3

