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Goals and contributions

Train a deep denoiser network

« Why is deep learning needed? So that denoiser adapts to underlying data!
Remove the need for separate training data with self-supervision
Contribution 1: Bayesian approach for high-quality denoising results

. Target is to match a denoiser trained with clean reference data

Contribution 2: Improve training performance with an efficient
blind-spot network architecture



Background: Traditional training

Input: Noisy image Target: Clean image



Background: Noise2Noise training
[Lehtinen et al., 2018]

Input: Noisy image Target: A different noisy image




Background: Noise2Void training
[Krull et al., 2018]

Input: Noisy image Target: The same noisy image
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What is supervised training?

. Lump noisy pixel y and context (1, together
. Learn to infer clean pixel x as E,|p(x|y, @, )]

. le., train fy:y,Q, — x by optimizing argmin E, o [L(f5(, 2, ), x)]
9

. Simplifying assumptions made here: L2 loss, zero-mean noise



What is Noise2Void training?

. Only use context €, for inference [Krull et al., 2018]
. Thus, approximate clean pixel x as Ex[p(x‘ﬂy)]

. Can replace x with y if noise is zero-mean [Lehtinen et al., 2018]

. Optimize argmin E,, [L(fe (Qy),y)] — no clean x is needed
6

. This is equivalent if corruption is independent between pixels!

. See [Batson and Royer, 2019] for further analysis



Limitations of Noise2Void

. Ignoring y when denoising clearly leaves useful information unused

. While we can regress fg: Q, — y, we cannot regress fy:y,{, =y

. Trivial solution is to pass pixel value through as-is 2 no denoising

. Hence, at training time we cannot use y as an input

. Our solution is to bring in y via Bayesian inference at test time

« Concurrent work by [Krull et al., 2019]



A more complete view

Assume a known noise model p(y|x) that is independent of (1,

Observed noisy data (training data) now relates to clean data as

p(v12,) = [ P01 p(x]0,) ax

Training data Noise Unobserved
model

This lets us learn to predict a parametric model for p(x|Q,) that

we represent as a multivariate Gaussian N (u.,., X,) over color
components



Test-time inference

The (unnormalized) posterior probability of x, given observations
of y and Q,, is given by Bayes’ rule as

p(x[y, Q,) « p(ylx) p(x]Q,)
Post;:rior Novise Privor ~—_____ Predicted by
model ~—_ the network

Known

We can make our best guess of x based on the posterior distribution

Concretely, we output the posterior mean E,|p(x|y, @, )] because it
minimizes MSE and therefore maximizes PSNR



Test-time inference — a sketch

. Simplified view of a 1D (monochromatic) case

p(x|Q,) predicted — Posterior mean E,[p(x|y, @, )]
by network based i “most likely clean value based on all evidence”

on context (always
Gaussian)

p(y|x) from observed y
and noise model (not
necessarily Gaussian)
“what the “wRAat the

network observed noisy
predicts” pixel suggests”




Summary of our approach

. In training phase, train neural network fy to map context €, to
mean y, and variance X, to approximate prior p(x|Q,)

. Known noise model maps NV (,, £,) = N (y, Z,) so training can be
done using standard Gaussian process regression (see e.g., [Nix and
Weigend, 1994])

. At test time, evaluate f5((,) and compute posterior mean
E.[p(x|y, @,)| by closed-form integration



Implementing blind-spot network efficiently

. Our solution: Combine information from four branches, each
having its receptive field restricted to one direction only
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. Restricting the receptive field to one half-space is easier than
removing just one pixel



Optimizing a bit

. Roll the four branches into one, rotate image data instead

e III B

N

. Implicitly shares weights between branches

. Implementation details in the paper



Unknown noise parameters

. What if the noise model has an unknown parameter? What if the
parameter varies for every image?

. E.g., standard deviation ¢ in Gaussian noise N (0, c?I)

. We show that these can be estimated from the data as well, so that
each image in training and test data can have a different, unknown
amount of noise

« Requires regularization in certain cases to break ambiguity (is the
image actually noisy vs. is the clean signal hard to predict) — see
paper for details



Results: Gaussian noise (o = 25)

Supervised training, Our method,
Noisy input clean training data  noisy data only

31.17dB 31.17dB

-

KODAK-14 20.42dB 30.88 dB 30.80dB



Table 1: Image quality results for Gaussian noise. Values of o are shown in 8-bit units. :
Supervised

training with

Noise type  Method o known? KoODAK BSD300 SETI4 Average
clean targets
Baseline, N2C no 32.46 31.08 31.26 31.60 |«
Baseline, N2N no 32.45 31.07 31.23 31.58 Our result when
Our yes 32.45 31.03 31.25 31.57 7 o is known vs.
Gaussian _L . 1o 32.44 31.02 31.22 31.56 estimated from data
PUN Qumma s e N6 % o o
ur ablated, diag,. no 31.5¢ 9. 30.5° 30.6° , -
Our ablated, 1 only no 3064 0865 2057 2962« \oise2Void: Ignore
CBM3D yes 3182 3040 3068 3096 y and predict based
CBM3D no 31.81 30.40 30.66 3096 on context only
Baseline, N2C no 32.57 31.29 31.27 31.71
Baseline, N2N no 32.57 31.29 31.26 31.70
Our yes 32.47 31.19 31.21 31.62
Gaussian Our | no 32.46 31.18 31.13 31.59
o € [5,50] Our ablated, d%ag. > yes 31.59 30.06 30.54 30.73
’ Our ablated, diag. X no 31.58 30.05 30.45 30.69
Our ablated, p only no 30.54 28.56 29.41 29.50
CBM3D yes 31.99 30.67 30.78 31.15

CBM3D no 31.99 30.67 30.72 31.13




Our results are within 0.04 dB from supervised training

Table 1: Image quality results for Gaussian noise. Values of o are shown in 8-bit \nits. :
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Baseline, N2N no 32.45 31.07 31.23 31.58 Our result when
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Table 1: Image quality results for Gaussian noise. Values of o are shown in 8-bit \nits. :
Supervised
Noise type  Method o known? KODAK BSD300 SETI4 Avexage training with
clean targets
Baseline, N2C no 32.46 31.08 31.26 31.60 |«
Baseline, N2N no 32.45 31.07 31.23 31.58 Our result when
Our ves 3245 3103 3125 |31.57 7 5 s Known vs.
Gaussian LU . 1o e L __ L estimated from data
PUN Qummrm T e @ wol xw o
ur ablated, diag. no 31.55 9. 30.5: 30.61 . -
Our ablated, 12 only no 3064 2865 2957 2962 |oise2Void: Ignore
CBM3D yes 3182 3040 3068 3096 y and predict based
CBM3D no 31.81 3040  30.66  30.96 on context only
Baseline, N2C no 32.57 31.29 31.27 31.71
Baseline, N2N no 32.57 31.29 31.26 31.70
Our yes 32.47 31.19 31.21 31.62 |G
Gaussian  OUr no 32.46 31.18 31.13 31.59 Close to baseline
o € [5,50] Our ablated, diag. X2 yes 31.59 30.06 30.54 30.73 with variable noise
" Our ablated, diag. X no 31.58 30.05 30.45 30.69 (o € [5,50]) as well
Our ablated, p only no 30.54 28.56 29.41 29.50
CBM3D yes 31.99 30.67 30.78 31.15
CBM3D no 31.99 30.67 30.72 31.13




Results: Poisson noise (A = 30)

Supervised training, Our method,
Noisy input clean training data noisy data only

' 34.63dB

18.63dB 29.12dB 29.11dB



= 0.5)

Impulse noise («

Results

’

Our method
noisy data only

Supervised training,
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Noisy input
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PSNR (dB)

Evaluation of network architecture

Our blind-spot network Standard network architecture with
architecture converges quickly masking-based training [Krull et al., 2018]
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Conclusions

. Training high-quality denoisers is possible with noisy data only,
when we have just one noisy realization of each training image

. Can train a denoiser from a corpus of noisy data — no separate
training set is required

. Result quality is comparable to traditionally trained networks

. Future work: Extend to more general corruptions?

. Can we relax the assumption that noise is independent between
pixels?



Thank you

Paper: https://arxiv.org/abs/1901.10277

Code: https://qgithub.com/Nvlabs/selfsupervised-denoising

Feel free to contact with any questions: slaine@nvidia.com
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