
Modular Primitives for High-Performance Differentiable Rendering

SAMULI LAINE, NVIDIA
JANNE HELLSTEN, NVIDIA
TERO KARRAS, NVIDIA
YEONGHO SEOL, NVIDIA
JAAKKO LEHTINEN, NVIDIA and Aalto University
TIMO AILA, NVIDIA
We present a modular differentiable renderer design that yields performance
superior to previous methods by leveraging existing, highly optimized hard-
ware graphics pipelines. Our design supports all crucial operations in a
modern graphics pipeline: rasterizing large numbers of triangles, attribute
interpolation, filtered texture lookups, as well as user-programmable shading
and geometry processing, all in high resolutions. Our modular primitives al-
low custom, high-performance graphics pipelines to be built directly within
automatic differentiation frameworks such as PyTorch or TensorFlow. As
a motivating application, we formulate facial performance capture as an
inverse rendering problem and show that it can be solved efficiently using
our tools. Our results indicate that this simple and straightforward approach
achieves excellent geometric correspondence between rendered results and
reference imagery.

CCS Concepts: • Computing methodologies → Rasterization; Shape
inference.

Additional Key Words and Phrases: Differentiable rendering, rasterization,
motion capture.

ACM Reference Format:
Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen,
and Timo Aila. 2020. Modular Primitives for High-Performance Differen-
tiable Rendering. ACM Trans. Graph. 39, 6, Article 194 (December 2020),
14 pages. https://doi.org/10.1145/3414685.3417861

1 INTRODUCTION
Differentiable rendering is a fundamental building block in machine
learning of 3D geometry. Typically training data is available only
as images, and finding a corresponding 3D representation requires
analysis by synthesis, i.e., rendering candidate images, computing the
loss based on training and candidate images, and propagating the
errors back to 3D positions and other scene attributes. Many classical
computer graphics and vision problems including the estimation of
reflectance, geometry, lighting, and camera parameters can be cast
into this inverse rendering framework [Patow and Pueyo 2003].

Much of modern machine learning makes use of first order (gra-
dient-based) optimization techniques implemented using backprop-
agation. From a computational point of view, the explosive growth
in model sizes and capabilities has, for a large part, relied on the
availability of primitive operations that allow massively parallel and

Authors’ addresses: Samuli Laine, NVIDIA, slaine@nvidia.com; Janne Hellsten, NVIDIA,
jhellsten@nvidia.com; Tero Karras, NVIDIA, tkarras@nvidia.com; Yeongho Seol,
NVIDIA, yseol@nvidia.com; Jaakko Lehtinen, NVIDIA, Aalto University, jlehtinen@
nvidia.com; Timo Aila, NVIDIA, taila@nvidia.com.

© 2020 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3414685.3417861.

coherent execution of both the forward and backward (gradient)
passes, allowing highly complex computation graphs to be built
out of them. However, the majority of effort in creating efficient
primitive operations has focused on operating on densely-sampled
data stored in multidimensional regular grids. These kind of opera-
tions alone are not sufficient for 3D rendering because the mapping
from a scene representation to pixel values is highly irregular and
dynamic. As such, specialized differentiable rendering algorithms
have emerged for solving two problems:

(1) Forward pass: Given the factors that affect the shape and
appearance of a 3D scene, render a 2D image; and

(2) Backward pass: Given the gradient of a loss function defined
on the output image pixels, compute the gradient of the loss
with respect to the input shape and appearance factors.

This interface is universally used by autodifferentiation frameworks
such as PyTorch and TensorFlow, and it allows 3D rendering to
be used as a building block in a complex model that is trained by
modern stochastic first order optimization techniques.
Despite its long history, differentiable rendering can be consid-

ered a nascent field due to the recent proliferation of algorithms
and applications. Most previous research is targeted towards a spe-
cific use case (e.g., pose or shape estimation), and is typically only
evaluated on downstream tasks as part of a larger machine learning
system [Chen et al. 2019; Kato et al. 2018; Liu et al. 2019]. These spe-
cific use cases and data sets allow optimizations and design choices
that do not scale to other uses. For example, low geometric com-
plexity may make it acceptable to not parallelize over triangles, but
this quickly backfires on a larger scene; single objects viewed in a
vacuum may enable one to disregard the effects of mutual occlusion
between triangles when computing gradients, but this approxima-
tion is untenable in a scene with non-trivial depth complexity.

Another parallel line of research studies differentiable physically-
based light transport simulation that models complex effects such
as area light sources and indirect illumination [Li et al. 2018; Loubet
et al. 2019; Nimier-David et al. 2019]. Built on Monte Carlo sampling,
these methods seek the best attainable image quality and accuracy
at the cost of longer rendering times.

We build on the rich literature on real-time graphics systems that
has long sought efficient solutions for managing the complex, dy-
namic mapping between world points and image pixels, and has de-
livered extremely efficient and practical hardware implementations.
In particular, we seek to formulate and implement a differentiable
rendering system that makes use of these pipelines to maximal

ACM Trans. Graph., Vol. 39, No. 6, Article 194. Publication date: December 2020.

https://doi.org/10.1145/3414685.3417861
https://doi.org/10.1145/3414685.3417861

194:2 • Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo Aila

Table 1. Comparison of characteristics of selected differentiable rendering
systems.

OpenDR NMR SoftRas DIB-R Li et al. Mitsuba2
Our[2014] [2018] [2019] [2019] [2018] [2019]

Performance∗ ✔ ✗ ✗ ✗ ✖ ✖ ✔

Scalability ✔ ✖ ✖ ✖ ✔ ✔ ✔

Flexibility ✖ ✖ ✖ ✖ ✔ ✔ ✔

Antialiasing ✖ ✖ ✗ ✖ ✔ ✔ ✔

Occlusion ✔ ✔ ✖ ✗ ✔ ✔ ✔

Gradients ✖ ✖ ✔ ✗ ✔ ✗ ✔

Noise-free ✔ ✔ ✔ ✔ ✖ ✖ ✔

No tuning ✔ ✔ ✖ ✖ ✔ ✗ ✔

GI ✖ ✖ ✖ ✖ ✔ ✔ ✖
∗Performance considers suitability to intensive optimization such as in deep
learning; Scalability refers to performance with respect to surface tessellation
and image resolution; Flexibility is whether the system is designed to support
arbitrary shading; Antialiasing requires that geometric edges are smoothed
in the result image; Occlusion considers if geometrically obscured surfaces
are guaranteed to not affect the resulting image; Gradients refers to the cor-
rectness of gradients with respect to rendered image; Noise-free systems do
not rely on random sampling; No tuning refers to lack of tunable parameters
that affect the rendered image or gradients. GI denotes global illumination,
support for physically-based illumination and shadowing including indirect
effects. See text for detailed analysis.

extent, without sacrificing their desirable properties such as cor-
rect outputs, a high degree of user control through programmable
shading and geometry processing, massive parallelization in all op-
erations, and the ability to render high-resolution images of scenes
consisting of millions of geometric primitives.
Concretely, we describe a differentiable rendering system based

on deferred shading [Deering et al. 1988], and identify four primitive
operations for which we provide custom, high-performance imple-
mentations: rasterization, attribute interpolation, texture filtering,
and antialiasing. Our modular primitives enable rendering high-
resolution images of complex scenes, using arbitrary user-specified
shading, directly inside automatic differentiation (AD) frameworks
such as TensorFlow or PyTorch.

As amotivating example, we cast facial performance capture as an
inverse rendering problem and show that it can be efficiently solved
using direct photometric optimization of shape and surface tex-
ture in megapixel resolutions. While our proof-of-concept solution
does not aim to reconstruct the mouth, eyes, or complex material
appearance, the high accuracy of the results in comparison to a
state-of-the-art commercial solution demonstrates the viability of
high-performance differentiable rendering in solving this problem.

Our differential rasterization primitives are publicly available at
https://github.com/NVlabs/nvdiffrast.

2 RELATED WORK
There is a large body of work on using rendering as part of an opti-
mization process that infers properties of the world from images.
These include inverse rendering algorithms that fit 3D and appear-
ance models to photographs in an analysis-by-synthesis loop [Patow
and Pueyo 2003], as well as techniques that use a 3D renderer as
part of a more complex machine learning model.

By far the most common approach in previous work is to design a
special-purpose differentiable image synthesis pipeline focusing on

the particular requirements of the downstream task, with no partic-
ular emphasis on flexibility or generality [Chen et al. 2019; Kato et al.
2018; Liu et al. 2019]. A notable exception is OpenDR [Loper and
Black 2014] that, despite its limited shading model, explicitly sets
out to develop a general-purpose differentiable rendering system.

Research on general-purpose differentiable rendering divides into
two categories depending on whether the primary motivation is
image quality or performance. Table 1 summarizes various charac-
teristics of the previous methods analyzed below.
Li et al. [2018] introduce differentiable, physically-based render-

ing using Monte Carlo ray tracing with proper visibility gradients.
Light transport is integrated using random sampling, which leads to
noise in the images that diminishes with more sampling. Mitsuba 2
[Loubet et al. 2019; Nimier-David et al. 2019] is a versatile rendering
framework that can target a wide array of rendering problems. The
primary problem in using these renderers as parts of an intensive
optimization or learning task is their lack of performance— to not
become a bottleneck over millions of iterations, the rendering times
in sufficiently high resolutions should be measured in milliseconds,
instead of seconds or minutes needed for recursive light transport
simulation. These systems can also be configured to compute only
primary visibility and local shading, which is sufficient for many ap-
plications. This boosts the performance of Li et al. [2018] to ∼100ms
in a simple scene in 640×480 resolution, which is still orders of
magnitude too slow for many applications.
The second category of differentiable rendering aims at higher

performance. Primarily targeted at solving tasks such as shape or
pose inference [Chen et al. 2019; de La Gorce et al. 2011; Liu et al.
2019; Loper and Black 2014], they render and shade 3Dmeshes using
local shading only. Strong emphasis is placed on obtaining useful
visibility gradients to facilitate shape inference via gradient descent.

Soft Rasterizer [Liu et al. 2019] rasterizes each triangle as a prob-
abilistic cloud with a configurable blur radius; these clouds are
combined heuristically based on other configurable parameters.
This blur makes coverage a continuous function of vertex positions,
which is necessary for obtaining visibility gradients. However, the
blur also means that opaque surfaces become transparent around
edges, leading to an incorrect image. Optimization thus requires
tuning these parameters to reach a balance between image correct-
ness and gradient quality. DIB-R [Chen et al. 2019] renders colors
without antialiasing and outputs an additional alpha channel that
extends outside the covered pixels by a configurable blur radius. The
alpha channel can be used for approximating visibility gradients, but
only if an alpha mask is available for reference images as well. Also,
these gradients are affected by all triangles regardless of occlusion.
Because color channels are point sampled, no visibility gradients
are obtained for silhouettes that are in front of other geometry. This
is insufficient for, e.g., determining hand poses [de La Gorce et al.
2011], and would also fail if one were to render, e.g., a skybox behind
the mesh, so the method cannot be considered general-purpose. As
with Soft Rasterizer, it is not obvious how the blur parameter should
be set. Neural Mesh Rendering [Kato et al. 2018] produces the image
using point sampling and no antialiasing, and in the backward pass
hallucinates image-based gradients on triangle edges based on the
geometry. The gradients are thus not consistent with the rendered
image.

ACM Trans. Graph., Vol. 39, No. 6, Article 194. Publication date: December 2020.

https://github.com/NVlabs/nvdiffrast

Modular Primitives for High-Performance Differentiable Rendering • 194:3

In contrast to these approximations, our aim is to differentiate
the standard hardware graphics pipeline without altering its image
formation principles. This places special emphasis on occlusion by
opaque surfaces. For the gradient to be consistent with the forward
imaging model, a 3D primitive that has no effect on the image— for
instance, due to being off the screen or occluded by other primitives—
should, by our premise, receive a zero gradient.
The reparameterization technique of Loubet et al. [2019] used

in Mitsuba 2 [Nimier-David et al. 2019] produces correct visibility
gradients only when occluders and occludees can be inferred from
four samples. Although more complex occlusion scenarios are not
handled correctly, Loubet et al. introduce a bandwidth parameter
that can be adjusted to reduce the errors at the cost of increased
noise. It is argued that handling the most common, simple cases
is sufficient for practical purposes, and our approach for visiblity
gradients is founded on the same premise. OpenDR [Loper and
Black 2014] approximates all gradients based on the final image and
knowledge of which triangle was rendered into each pixel. This has
the unfortunate effect of producing incorrect gradients for effects
such as highlights, because all shading is assumed to be “glued” onto
the surfaces. As an example, OpenDR’s gradients falsely indicate
that moving a planar surface tangentially would move the highlights
and reflections on it as well. In addition, inferring gradients from
the final pixels can be seen as equivalent to taking finite differences
instead of analytic gradients. Flexibility is limited because textures
can modulate appearance only multiplicatively, and differentiation
with respect to textures is not supported.

3 DIFFERENTIABLE RENDERING PRIMITIVES
Given a 3D scene description in the form of geometric shapes, ma-
terials, and camera and lighting models, rendering 2D images boils
down to two computational problems: figuring out the things that
are visible in each pixel, and what color those things appear to be.
A proper differentiable renderer has to provide gradients for all the
parameters— e.g., lighting and material parameters, as well as the
contents of texture maps—used in the process.

For what follows, it is useful to break the rendering process down
into the following form, where the final color 𝐼𝑖 of the pixel at screen
coordinates (𝑥𝑖 , 𝑦𝑖) is given by

𝐼𝑖 = filter
𝑥,𝑦

(
shade

(
𝑀
(
𝑃 (𝑥,𝑦)

)
, lights

)) (
𝑥𝑖 , 𝑦𝑖

)
. (1)

Here, 𝑃 (𝑥,𝑦) denotes the world point visible at (continuous) screen
coordinates (𝑥,𝑦) after projection from 3D to 2D, and𝑀 (𝑃) denotes
all the spatially-varying factors (texture maps, normal vectors, etc.)
that live on the surfaces of the scene. The shade function typically
models light-surface interactions. The 2D antialiasing filter, crucial
for both image quality and differentiability, is applied to the shad-
ing results in continuous (𝑥,𝑦), and the final color is obtained by
sampling the result at the pixel center (𝑥𝑖 , 𝑦𝑖). In real-time graphics,
these steps are typically approximated by techniques like multisam-
ple antialiasing (MSAA).

The geometry, projection, and lights can all be considered as para-
metric functions. The visible world point is affected by the geometry,
parameterized by 𝜃𝐺 , as well as the projection, parameterized by
𝜃𝐶 . Similarly, the surface factors are parameterized by 𝜃𝑀 , and light

sources by 𝜃𝐿 .1 We follow the common view and take differentiable
rendering to mean computing the gradients 𝜕𝐿(𝐼)/𝜕{𝜃𝐺 , 𝜃𝑀 , 𝜃𝐶 , 𝜃𝐿}
of a scalar function 𝐿(𝐼) of the rendered image 𝐼 with respect to
the scene parameters. Note that this does not require computing
the (very large) Jacobian matrices [𝜕𝐼/𝜕𝜃𝐺], etc., but rather only
the ability to implement multiplication with the Jacobian transpose
(“backpropagation”), yielding the final result through the chain rule:[

𝜕𝐿(𝐼)
𝜕𝜃𝐺

]
=

[
𝜕𝐼

𝜕𝜃𝐺

] [
𝜕𝐿

𝜕𝐼

]
,

and similarly for the other parameter vectors.
Two main factors make the design of efficient rendering algo-

rithms challenging. First, the mapping 𝑃 (𝑥,𝑦) between world points
and screen coordinates is dynamic: it is affected by changes in both
scene geometry and the 3D-to-2D projection. Furthermore, it is
discontinuous due to occlusion boundaries. These two factors are
also central points of difficulty in computing the gradients we seek.
The following sections outline our approach to addressing them.

3.1 Design Goals
Our overall aim is to implement an efficient differentiable real-time
graphics pipeline, with the following specific design goals:

G1 Efficiency. Support modern graphics pipelines’ ability to ren-
der, in high resolution, 3D scenes that are complex in terms of
geometric detail, occlusion, and appearance.

G2 Minimalism. Easy integration with modern automatic differ-
entiation (AD) frameworks, such as PyTorch and Tensorflow,
without duplication of features.

G3 Freedom. Support arbitrary user-specified shading, as well as
arbitrary parameterizations of input geometry, without commit-
ting to specific forms such as the Phong model or blendshapes.

G4 Quality. Support the texture filtering operations required by
shaders that implement complex appearance models, while mak-
ing no assumptions about the contents of the textures. In addi-
tion to quality, this is also important for optimization dynamics.

3.2 System Design
Goal G1 immediately precludes algorithms that do not parallelize
over both the geometric primitives and pixels, and those that do
not properly account for occlusion of overlapping primitives. In the
remaining space, we make the following design choices:

C1 Modularity. We identify four modular primitive operations
that implement crucial operations in a graphics pipeline. Each
primitive is exposed as a backpropagation-capable operation
with a fixed input/output interface to the host AD framework.
Much like today’s configurable and programmable hardware
graphics pipelines, this non-monolithic design enables easy con-
struction of potentially complex custom rendering pipelines.

C2 Positions and Textures are Tensors. Our system takes the
input geometry and texture maps in the form of tensors from

1In the simplest case, 𝜃𝐺 and 𝜃𝑀 , could describe, say, the vertex coordinates of a
triangle mesh of a fixed topology and a diffuse albedo stored at the vertices and inter-
polated into the interiors of triangles; we use the abstract notation to allow for complex
parameterizations fed into the renderer from within a deep learning model.

ACM Trans. Graph., Vol. 39, No. 6, Article 194. Publication date: December 2020.

194:4 • Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo Aila

R
as

te
ri

za
ti
o
n

(u, v)
depth
triID

In
te

rp
o
la

ti
o
n

Vertex
attributes

Interpolated
attributes

Textures Te
xt

u
re

 l
o
o
ku

p

Li
g
h
ti
n
g

et
c.

 Clip-
space
pos

Index
buffer

Filtered
samples

Aliased
image

A
n
ti
al

ia
si

n
g

Discrete inputs

Intermediate buffers

Custom operations

Additional computation

Connection with gradients

Forward connection only

Final
image

G
eo

m
et

ry
p
ro

ce
ss

in
g
 /

 g
en

er
at

io
n

∂u/∂x, ∂u/∂y
∂v/∂x, ∂v/∂y Inputs that obtain gradients

Further
processing

Attribute pixel
derivatives
∂A/∂x, ∂A/∂y

Fig. 1. A simple differentiable rendering pipeline with our proposed primitive operations highlighted in red. The input data for rendering (blue) may be
generated by, e.g., a neural network if the pipeline is part of a larger computation graph. In simpler setups the geometry processing might include only the
model/view/perspective transformations for vertex positions with other inputs being constants or learnable parameters. All intermediate buffers (green)
are in image space. Connections with gradients are denoted by a white triangle. Channel counts are fixed only for vertex positions and indices, and in
the intermediate buffers produced by the rasterization operation. There are no restrictions on the channel counts for vertex attributes, textures, related
intermediate data, or the output image.

the host AD system. This allows parameterizing both in a freely-
chosen manner, and enables our rendering primitives to be used
as building blocks of a complex learning system.

C3 Operate in Clip Space. Contrary to common differentiable
rendering systems, we place it on the user’s responsibility to
perform world, view, and homogeneous perspective transforma-
tions — but not perspective division — on the geometry using
the host AD system. By this, we follow the separation between
geometry and pixel processing made by all major graphics APIs.
We feel this offers the cleanest possible interface between the
host AD system and the renderer, further amplifying the benefits
of their co-existence.

C4 Deferred Shading. We build on the concept of deferred shad-
ing [Deering et al. 1988]. This entails first computing, for each
pixel, the 𝑀 (𝑃 (𝑥,𝑦)) terms from Equation (1) and storing the
intermediate results in an image-space regular grid. The grid
is subsequently consumed by the shading function. As shading
is performed on a regular grid, it can be implemented entirely
outside our rendering primitives using the efficient dense tensor
operations in the host AD library, in line with G2 and G3.

C5 Image-spaceAntialiasing.We approach differentiation of cov-
erage in image space, approximating the inputs of the antialias-
ing filter in Equation (1) by the output grid of the deferred
shading pass. Effectively, we assume shading to be constant
with respect to the coverage effects at silhouette boundaries, but
not with respect to other effects in appearance.

C6 Triangles. We focus on triangle meshes as the basic geometric
primitive, and seek to utilize the modern graphics pipelines’ im-
mensely optimized rasterization subsystem to maximal extent.

We build pipelines out of the following four primitive operations
customized for gradient computation. Figure 1 illustrates an example
graphics pipeline built out of them.
Rasterization implements the dynamic mapping between world

coordinates and discrete pixel coordinates. Leveraging the hardware
rasterizer, we store per-pixel auxiliary data in the form of barycentric
coordinates and triangle IDs in the forward pass. Using barycentrics
as a base coordinate system allows easy coupling of shading and

interpolation, as well as combining texture gradients with geometry
gradients in the backward pass.

Interpolation is a pipeline operation that expands user-defined
per-vertex data (i.e., vertex attributes) to pixel space. Making use of
the barycentrics computed by the rasterizer, the interpolator module
manages this mapping in both directions.

Texture filtering is a key operation in a shading system. Taking
as inputs the interpolated texture coordinates and their screen-space
derivatives for MIP-mapping, as well as texture data tensors, our
texture filtering module performs trilinear MIP-mapping with gra-
dients correctly propagated through both input texture coordinates
as well as the contents of the (MIP-mapped) texture maps.

Antialiasing is performed on the output of the deferred shading
operation, taking as additional inputs the barycentrics, triangle IDs,
and vertex positions and indices.
We now proceed to describe each primitive operation in detail.

For simplicity, the following discussion assumes that a single image
is being rendered. However, a differentiable renderer is typically
used in stochastic gradient descent -type schemes using minibatches
of multiple rendered images. All our operations efficiently support
minibatching.

3.3 Rasterization
As per widely adopted graphics API standards, our rasterization
module consumes triangles with vertex positions given as an array
of clip-space homogeneous coordinates (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 ,𝑤𝑐). We leave it
as the user’s responsibility to compute clip space positions— often,
this comprises only a few homogeneous 4×4 matrix multiplications.
The backward pass then computes the gradient 𝜕𝐿/𝜕{𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 ,𝑤𝑐 }
of the loss 𝐿 with respect to the clip-space positions, leaving differ-
entiation with respect to any higher-level parameterizations for the
host AD library.

Forward pass. In the forward pass, the rasterizer outputs a 2D sam-
ple grid, with each position storing a tuple (ID, 𝑢, 𝑣, 𝑧𝑐/𝑤𝑐), where
ID identifies the triangle covering the sample, (𝑢, 𝑣) are barycentric
coordinates specifying relative position along the triangle, and 𝑧/𝑤
corresponds to the depth in normalized device coordinates (NDC).

ACM Trans. Graph., Vol. 39, No. 6, Article 194. Publication date: December 2020.

Modular Primitives for High-Performance Differentiable Rendering • 194:5

A special ID is reserved for blank pixels. Barycentrics serve as a
convenient base domain for interpolation and texture mapping com-
putations further down the pipeline. The NDC depth is utilized
only by the subsequent antialiasing module, and does not propagate
gradients. As a secondary output, the rasterizer outputs a buffer
with the 2×2 Jacobian of the barycentrics w.r.t. the screen coordi-
nates 𝐽uv = 𝜕{𝑢, 𝑣}/𝜕{𝑥,𝑦} for each pixel. These are later used for
determining the footprint for filtered texture lookups.

Internally, the rasterization is performed through OpenGL, lever-
aging the hardware graphics pipeline.2 Using the hardware graph-
ics pipeline ensures that the rasterization is accurate and there
are, e.g., no visibility leaks due to precision issues. We also auto-
matically get proper view frustum clipping as performed by the
hardware. The output values, including the per-pixel Jacobians be-
tween barycentrics and screen coordinates, are calculated using an
OpenGL fragment shader.
Both TensorFlow and PyTorch implement GPU tensor opera-

tions in CUDA. To bridge them with OpenGL, we use the driver’s
OpenGL/CUDA interoperability API. The API minimizes data copies,
using the same physical memory when possible, and never requires
data to leave the GPU memory.

Backward pass. The backward pass receives, for each pixel, the
gradient 𝜕𝐿/𝜕{𝑢, 𝑣} with respect to the barycentrics output by the
rasterizer, and computes the gradients 𝜕𝐿/𝜕{𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 ,𝑤𝑐 } for each
input vertex. The perspective mapping between barycentrics and
clip-space positions is readily differentiated analytically, and the
necessary output is obtained through[

𝜕𝐿

𝜕{𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 ,𝑤𝑐 }

]
=

[
𝜕𝐿

𝜕{𝑢, 𝑣}

] [
𝜕{𝑢, 𝑣}

𝜕{𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 ,𝑤𝑐 }

]
. (2)

The gradients w.r.t. the screen-space derivatives of the barycentrics
(𝜕𝐿/𝜕𝐽uv) are taken into account in a similar fashion. The backward
pass is implemented as a dense operation over output pixels, using a
scatter-add operation to accumulate the gradients from the pixels to
the correct vertices based on the triangle IDs. It can thus be trivially
parallelized using a CUDA kernel.

3.4 Interpolation
Attribute interpolation is a standard part of the graphics pipeline.
Specifically, it entails computing weighted sums of vertex attributes,
with the weights given by the barycentrics, thereby creating a map-
ping between the pixels and the attributes.3
Generally, vertex attributes can be used for arbitrary purposes.

One of their typical uses, however, is to provide 2D coordinates
for texture mapping. Because of this, our interpolator module sup-
ports computing, in the forward pass, screen-space derivatives
𝐽𝐴 = 𝜕𝐴/𝜕{𝑥,𝑦} of all or a subset of attributes for later use in
determining texture filter footprints and other purposes.

2On compute clusters, we use OpenGL with EGL for displayless hardware-accelerated
rendering.
3Note that with our rendering primitives, one can supply a different index buffer for
attribute interpolation than was used for rasterization. This is convenient when source
data comes from a modeler such as Autodesk Maya that associates each vertex with
a 3D position and a texture coordinate from separately indexed arrays. If attribute
interpolation were bundled with rasterization, such flexibility would not be possible.

Forward pass. Consider a single pixel at (𝑥,𝑦). Denoting a vec-
tor of attributes associated with the 𝑖th vertex by 𝐴𝑖 , the attribute
indices of the triangle visible in the pixel (𝑥,𝑦) by 𝑖0,1,2, and the
barycentrics generated by the rasterizer by 𝑢 = 𝑢 (𝑥,𝑦) and 𝑣 =

𝑣 (𝑥,𝑦), the interpolated vector 𝐴 is defined as

𝐴 = 𝑢 𝐴𝑖0 + 𝑣 𝐴𝑖1 + (1 − 𝑢 − 𝑣)𝐴𝑖2 . (3)

Given the rasterizer’s outputs (per-pixel triangle IDs and barycentrics),
implementation of the forward pass is trivial.
The screen-space derivatives for attributes tagged as requiring

them are computed using the barycenter Jacobians output by the
rasterizer by 𝜕𝐴/𝜕{𝑥,𝑦} = [𝜕{𝑢, 𝑣}/𝜕{𝑥,𝑦}] [𝜕𝐴/𝜕{𝑢, 𝑣}], where the
last Jacobian is simple to derive from Equation (3).

Backward pass. The inputs to the backward pass are the per-pixel
gradients 𝜕𝐿/𝜕𝐴 w.r.t. the interpolated attributes, as well as gradi-
ents w.r.t. the screen-space derivatives of the attributes. Much like
the backward pass of the rasterizer, the gradients w.r.t. the attribute
tensor are computed by a scatter-add into the tensor, applying the
Jacobians 𝜕𝐴/𝜕{𝐴𝑖0,𝑖1,𝑖2 } = {𝑢, 𝑣, 1 − 𝑢 − 𝑣} to the per-pixel input
gradients. By simple differentiation, the gradients w.r.t. the input
barycentrics are given by[

𝜕𝐿

𝜕𝑢

]
=
[
𝐴𝑖0 −𝐴𝑖2

]T [
𝜕𝐿

𝜕𝐴

]
,

[
𝜕𝐿

𝜕𝑣

]
=
[
𝐴𝑖1 −𝐴𝑖2

]T [
𝜕𝐿

𝜕𝐴

]
. (4)

In the same vein, the gradients w.r.t. the screen-space derivatives of
the input barycentrics 𝜕𝐿/𝜕𝐽uv are computed based on the incoming
gradients w.r.t. the screen-space derivatives of the attributes 𝜕𝐿/𝜕𝐽A.

3.5 Texture Mapping
We perform texture mapping using trilinear MIP-mapped texture
fetches. In the general case, this entails picking a fractional MIP-
map pyramid level (i.e., level-of-detail, LOD) based on the incoming
screen-space derivatives of the attributes used as texture coordi-
nates, and performing a trilinear interpolation from the eight texels
on the appropriate MIP pyramid levels. Figure 2 illustrates our im-
plementation. We choose the MIP level based on the texture-space
length of the major axis of the sample footprint as defined by the
screen-space derivatives of the texture coordinates. This is conser-
vative in the sense that grazing angles result in blurring instead of
aliasing.

Once a pair of MIP-map levels has been picked, operation of the
forward and backward passes closely resemble attribute interpola-
tion: On each level, the four closest texels take the place of the three
triangle vertices, and the two sub-texel coordinates that determine
exact position within the four-pixel ensemble take the place of the
barycentrics. Consequently, our implementation is highly similar,
with the forward pass requiring a gather, and the backward pass
requiring a scatter-add, with the related Jacobians computed with
equal simplicity from the bilinear basis functions and texture con-
tents. As the derivations are highly similar, we omit them for space.
Note, however, that gradients are computed also for the texture
coordinate attributes, as well as for the screen-space derivatives for
the texture coordinates.

MIP-mapped texturing differs from attribute interpolation by its
multiscale nature: gradients are accumulated on various levels of the
MIP-map pyramid in the backward pass. As all MIP-map levels are

ACM Trans. Graph., Vol. 39, No. 6, Article 194. Publication date: December 2020.

194:6 • Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo Aila

∂L/∂c[i,j]c[i,j]

g=f(s,t,lod)

(a) (b) (c)

Fig. 2. Filtered differentiable texture lookup with a non-constant texture. (a)
In the beginning of forward pass, prefiltered MIP levels 𝑐lod are constructed
from the full-resolution texture 𝑐 [𝑖, 𝑗] by repeated downsampling using a
2 × 2 box filter. (b) In forward pass, each lookup 𝑔 = 𝑓 (𝑠, 𝑡, lod) interpolates
prefiltered values on the appropriate MIP level as determined by the size of
sample footprint. In backward pass, we receive incoming gradients 𝜕𝐿/𝜕𝑔.
Texture coordinate gradients 𝜕𝐿/𝜕𝑠 and 𝜕𝐿/𝜕𝑡 for each lookup are com-
puted based on these and contents of texels that were used in interpolation.
Simultaneously, texture image gradients 𝜕𝐿/𝜕𝑐lod [𝑖, 𝑗] are accumulated
into each MIP level. In a trilinear lookup, these calculations are performed
on two adjacent levels and weighted according to the fractional part of lod.
(c) To produce outgoing full-resolution texture image gradients 𝜕𝐿/𝜕𝑐 [𝑖, 𝑗],
we sum the accumulated gradients from all MIP levels.

obtained from the finest-level texture during the construction in the
forward pass, the backward pass needs to finish by transposing the
construction operation and flattening the gradient pyramid so that
the gradient is specified densely at the finest level. Fortunately, this
is implemented easily by starting at the coarsest level, recursively
up-sampling the result and adding gradients from the next level,
precisely like collapsing a Laplacian pyramid.

To the best of our knowledge, no previous differentiable renderer
except for Li et al. [2018] has supported differentiable, filtered texture
sampling. While we currently do not do so, we note that it would
be possible to utilize the hardware texture unit in the forward pass,
and retain the CUDA kernel only for the backward pass. The key
challenge is that we cannot be certain of the implementation (e.g.,
numerical precision) of the hardware texture unit, and thus the
gradients might not match the forward pass. This will be especially
true for anisotropic texture fetches, where considerable freedom
exists in covering the footprint [Schilling et al. 1996]. Hardware
texture units also require specific memory layouts.

3.6 Analytic Antialiasing for Visibility Gradients
As usual in real-time graphics, we expect shading to be band-limited
via filtered texture lookups and other means, and thus not exhibit
aliasing within surfaces. However, point-sampled visibility causes
aliasing at visibility discontinuities, and more crucially, cannot pro-
duce visibility-related gradients for vertex positions. Antialiasing
converts the discontinuities to smooth changes, from which the
gradients can be computed [Li et al. 2018]. Note that antialiasing
can only be performed after shading, and therefore must be imple-
mented as a separate stage instead of bundling it into rasterization.

We follow the same approach as several previous methods [de La
Gorce et al. 2011; Loper and Black 2014] and approach the problem
by analytic post-process edge antialiasing. Image-based post-process

A B

p

q

A B

p

q

before after before after

(a) (b)

Fig. 3. Illustration of our analytic antialiasing method. A vertical silhouette
edge 𝑝,𝑞 passes between centers of horizontally adjacent pixels 𝐴 and 𝐵.
This is detected by the pixels having a different triangle ID rasterized into
them. Pixel pair 𝐴, 𝐵 is processed together, and one of the following cases
may occur. (a) The edge crosses the segment connecting pixel centers inside
pixel 𝐵, causing color of 𝐴 to blend into 𝐵. (b) The crossing happens inside
pixel 𝐴, so blending is done in the opposite direction. To approximate the
geometric coverage between surfaces, the blending factor is a linear function
of the location of the crossing point— from zero at midpoint to 50% at pixel
center. This antialiasing method is differentiable because the resulting pixel
colors are continuous functions of positions of 𝑝 and 𝑞.

antialiasing is an old and widely-used technique in real-time graph-
ics, with famous techniques such as FXAA being recently super-
seded by deep learning algorithms [NVIDIA 2018]. For an overview,
see Jimenez et al. [2011]. Our method is a variant of distance-to-
edge anti-aliasing (DEAA) [Malan 2010] and geometric post-process
antialiasing (GPAA) [Persson 2011]. The main differences are in
how visibility discontinuities are detected and attributed to vertex
positions, as required for computing gradients.

Forward pass. Figure 3 illustrates our antialiasing method. We
first detect potential visibility discontinuities by finding all neigh-
boring horizontal and vertical pixel pairs with mismatching tri-
angle IDs. For each potential discontinuity, we fetch the trian-
gle associated with the surface closer to camera, as determined
from the NDC depths computed during rasterization. We then
examine the edges of the triangle to see if any of them are sil-
houettes4 and pass between the neighboring pixel centers. For
horizontal pixel pairs, we consider only vertically oriented edges
(|𝑤𝑐,1 · 𝑦𝑐,2 −𝑤𝑐,2 · 𝑦𝑐,1 | > |𝑤𝑐,1 · 𝑥𝑐,2 −𝑤𝑐,2 · 𝑥𝑐,1 |), and vice versa.

If a silhouette edge crosses the segment between pixel centers, we
compute a blend weight by examining where this crossing happens.
Pixel colors are then adjusted to reflect the approximated coverage of
either surface in the pixels. Essentially this approach approximates
the exact surface coverage per pixel [Jalobeanu et al. 2004] using
an axis-aligned slab. Consequently the coverage estimate is exact
for only perfectly vertical and horizontal edges that extend beyond
the pixel. For a diagonal long edge that passes exactly between the
pixel centers, the error in coverage is 1

8 th of a pixel.
Finely tessellated surfaces reveal two further approximations.

Theoretically, the silhouette between two pixel centers can take

4We consider an edge to be on a silhouette if it has only one connecting triangle, or if
it connects two triangles that lie on the same side of it after projection. This includes
silhouettes that have another surface behind them, unlike DIB-R [Chen et al. 2019] that
only considers silhouettes against the background.

ACM Trans. Graph., Vol. 39, No. 6, Article 194. Publication date: December 2020.

Modular Primitives for High-Performance Differentiable Rendering • 194:7

any poly-line shape, and the axis-aligned slab approximation can be
arbitrarily poor. However, typically additional tessellation manifests
itself on the pixel-scale as slightly rounded silhouettes, and for these
the approximation accuracy is only slightly worse than for long
edges, although exact error bounds cannot be given.
A potentially more serious approximation results from the as-

sumption that all triangles that contain silhouette edges overlap
pixel centers and are thus stored during rasterization. Clearly, if we
tessellate a surface enough, it is rare for a triangle with a silhouette
edge to get rasterized. In this situation, some silhouette edges are
not found during antialiasing and no visibility gradient is obtained
for these pixels. Occasionally missing a gradient can slow down
optimization but rarely prevents it from succeeding, as we show in
Section 4.

Backward pass. To prepare for the gradient computation, we store
the results of the discontinuity analysis in the forward pass so that
we do not have to repeat it in the backward pass. Gradient compu-
tation with the stored data is then easy— for each pixel pair that
was antialiased in the forward pass, we determine how both vertex
positions influence the blending coefficient, and transfer incoming
pixel gradients to vertex positions accordingly using scatter-add
operations.

3.7 Discussion
Our design aims to do as little as possible apart from managing
the complex and dynamic mappings between pixels and the in-
put vertices and textures, leaving the field open for utilizing novel
parameterizations for geometry, textures, and lighting models. In
particular, the modular design allows the units to be chained many
times in a single rendering pipeline. The deferred shading design
also leaves many options open. For example, it is easy to perform
texture-space shading instead of shading in the pixel domain: after
computing shading results using array operations in texture space,
one would simply look up the surface colors from the texture in the
deferred shading pass.

4 ANALYSIS
In this section, we validate our design principles via targeted, syn-
thetic tests. We first examine the properties of the visibility gradi-
ents resulting from our antialiasing, as well as the effects of filtered
texture lookups on texture convergence. Then, we construct a ren-
dering pipeline with nontrivial shading and use it to demonstrate
an optimization task that involves indirect texture lookups. We also
examine a pose fitting task with a difficult optimization landscape.
Finally, we measure the performance of our system and compare it
to previous differentiable rasterizers.

4.1 Visibility Gradients
To examine the validity of the gradients, we perform a synthetic test
wherewe attempt to infer vertex positions and colors of a simple unit
cube. We initialize the solution by taking the true vertex positions
and perturbing them randomly in range [− 1

2 ,
1
2]

3. The vertex colors
are initialized to random RGB values in [0, 1]3. We then run Adam
optimizer [Kingma and Ba 2015] (𝛽1 = 0.9, 𝛽2 = 0.999) for 5000
iterations, where in each iteration we render the reference mesh

Iteration 100 Iteration 1000 Iteration 5000 Final mesh

16
×
16

pi
xe
ls

8×
8
pi
xe
ls

4×
4
pi
xe
ls

Fig. 4. To validate that our visibility gradients provide useful information
even for small triangles, we infer vertex positions and colors of a simple
mesh in extremely small resolutions. The geometry of the current solution is
superimposed on the rasterized images for illustration purposes only. Right-
most column shows the final, optimized mesh rendered in high resolution.
In 4×4 resolution, the average triangle area is only 0.54 pixels. The opti-
mization nonetheless converges to the correct solution, albeit slower than
in higher resolutions. In 2×2 resolution the optimization fails to converge.

and the optimized mesh from same, random viewpoint, and take
the image-space 𝐿2 loss between the images. Based on this loss, we
learn both vertex positions and colors simultaneously. The learning
rate was ramped down exponentially from 10−2 to 10−4 over the
course of the optimization.

We implemented two modes for coloring the vertices. In the con-
tinuous coloring mode, the vertex colors at each corner are shared.
This yields a coloring that is continuous across the surface of the
cube and has 8 unique colors to optimize. In the discontinuous color-
ing mode, each face has four unique colors at the corners, i.e., a total
of 24 unique colors. Consequently, the coloring is not continuous
across the edges or vertices of the cube. It can be expected that
the latter mode is more difficult to optimize because of the larger
number of unknowns and presumably less smooth gradients due to
color discontinuities.
Figure 4 illustrates the results in the continuous coloring mode.

To our surprise, the optimization succeeds even at 4×4 resolution,
where the average size of a rendered triangle is approximately half a
pixel. This indicates that our antialiasing-based visibility gradients
offer enough information even for small triangles such as those
seen in finely tessellated meshes. However, rendering in higher
resolution offers faster convergence, highlighting that rendering
performance in high resolutions is crucial.

Figure 5 shows the average convergence curves for both coloring
modes in the three resolutions tested. Each curve is an average
over 10 successful optimization runs. We manually excluded the
cases where early optimization steps produced an irrecoverable self-
intersecting mesh, which happened in approximately 25% of runs in
4×4 resolution, and less often in higher resolutions. This concurs

ACM Trans. Graph., Vol. 39, No. 6, Article 194. Publication date: December 2020.

194:8 • Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo Aila

10 100 1000 5000

0.5

0.4

0.3

0.2

0.1

0

Iterations

G
eo

m
et

ri
c

er
ro

r 4×4
8×8
16×16

Fig. 5. Convergence of the cube shape and color optimization test (average
of 10 successful optimizations). Vertical axis shows the average distance
between vertices and their true positions in the unit cube. The solid curves
indicate convergence in the continuous coloring mode (Figure 4), and the
dashed curves correspond to the discontinuous coloring mode. As expected,
the latter is somewhat more difficult to optimize. Note the logarithmic
horizontal axis.

with the observation from Mitsuba 2 [Nimier-David et al. 2019] that
some rendering-related components require careful initialization.
We could have made these configurations less likely by lowering
the learning rate, initializing the mesh to further away from self-
intersecting states, or by using a suitable regularization term that
pushes apart geometry that is in danger of folding over itself. We
chose not to use any regularizers in this test because we explicitly
wanted our gradients to be based on image-space loss only.

4.2 Texture Filtering
To measure the importance of texture filtering via mipmaps, we
constructed a test where we attempt to learn a texture based on
synthetic, high-quality reference images that exhibit large variations
in scale. We then measure how well the texture is learned with and
without mipmapping.

Figure 6a shows example reference images of this task. The ref-
erence images are rendered first in 4096×4096 resolution and then
downsampled to 512×512 using a high-quality downsampling filter.
The reference images are thus well band-limited and display no
aliasing, blurring, or other artifacts.

The goal of the optimization is to learn a cube map -parameterized
texture with 512×512 pixel faces, mapped onto a unit sphere, based
on the reference images. We again use Adam [Kingma and Ba 2015]
as the optimizer (𝛽1 = 0.9, 𝛽2 = 0.99) and run it for 20 000 iterations,
ramping the learning rate from 10−2 to 10−3 during the course of
optimization. This learning rate schedule was chosen to be optimal
for the case without mipmapping. The training images are rendered
directly in 512×512 resolution, from the same, random viewpoints
as the reference images, and the optimizer attempts to minimize 𝐿2
loss between training and reference images. The same mesh and
texture parameterization are used for all images.

Learning the texture is made difficult by the sphere being placed
randomly at distance [1.5, 50] from the camera. Hence some refer-
ence images view a close-up patch of the surface, whereas most are
too distant to infer texel-level details. This replicates the effects of
highly variable pixel-to-texel ratio in reference imagery, which we
expect to be present in many kinds of real-world data such as street
view images or sets of in-the-wild photographs.

Figures 6b,c illustrate that with mipmapped texture filtering, the
learned texture converges to a solution much closer to the reference
(32.9 dB vs 25.6 dB). The convergence failure of non-mipmapped
version can be explained by a simple thought experiment. When the
reference image has a faraway pixel with a large texture footprint,
its value is determined by a weighted mean of the reference texture
over that footprint. Without mipmapping, we will sample whichever
full-resolution texel quad lands under that pixel center. If this value
deviates from the large-area average in the reference image, the
gradients will pull the texels in the learned texture towards this
average. Over many such updates, this pull towards the mean leads
to attenuated high-contrast details, which can be seen in Figure 6b
where even the converged non-mipmapped solution has less visible
contrast than the solution obtained via proper texture filtering.

4.3 Indirect Texturing, BRDF Optimization
To demonstrate the flexibility of our modules, we construct a ren-
dering pipeline that computes reflections via environment mapping
[Greene 1986] and adds a highlight from an additional light source
using a Phong BRDF [Phong 1975]. Figure 7 illustrates the use of this
rendering pipeline for solving the environment map contents and
Phong BRDF parameters based on the reflections from an irregular
object with known geometry and pose.

At the beginning of optimization, the BRDF parameters are initial-
ized to random values, whereas the environment map is initialized
to uniform gray. In each iteration, the camera angle and light di-
rection are randomized. Optimization is done using Adam with a
fixed learning rate of 10−2 and a simple image-space 𝐿2 loss. In
this synthetic test, the unknown environment texture and BRDF
parameters rapidly converge to the reference solutions.
The rendering pipeline is constructed as follows. We start by

rasterizing the geometry as usual, obtaining a frame buffer with
per-triangle barycentrics and their screen-space derivatives. We
also calculate a normalized reflection vector for each vertex. These
reflection vectors are then used as attributes for interpolation, which
yields per-pixel reflection vectors and screen-space derivatives for
each of their components. We represent the environment map as a
cube map, so for each per-pixel reflection vector we determine the
corresponding cube map face and 2D texture coordinates within
it. The same calculation also yields the screen-space derivatives of
the texture coordinates, and we perform a trilinear texture fetch to
the environment map. This is important because reflections from
curved surfaces introduce highly variable distortions and texture
footprint sizes. The cosine between the reflection vector and light
direction vector required by the Phong BRDF model is computed
based on the per-pixel reflection vectors.

The shading computation involves 18 lines of Python code using
standard TensorFlow operations. In our opinion, this is a small price
to pay for the complete freedom to tailor shading, data representa-
tions, etc., to the needs of the application, compared to incorporating
a fixed set of shadingmodels into the differentiable rendering system
itself. It would not be possible to implement a similar setup in previ-
ous rasterization-based differentiable renderers without modifying
their internals.

ACM Trans. Graph., Vol. 39, No. 6, Article 194. Publication date: December 2020.

Modular Primitives for High-Performance Differentiable Rendering • 194:9

1k iterations 5k iterations 20k iterations Ground truth

W
ith

m
ip
m
ap
s

1k 5k 10k

35

30

25

20

15

10
Iterations

PS
N

R
 (

d
B
) No mipmaps

With mipmaps

20k

N
o
m
ip
m
ap
s

(a) Example reference images (b) Closeups of learned texture (c) Texture convergence vs. reference

Fig. 6. Filtered texture sampling via mipmaps helps considerably when learning a texture in a difficult geometric setup. See text for full description. (a) Example
synthetic reference images in 512×512 resolution. (b) With mipmapping enabled, sampling is prefiltered and gradients are routed to the correct detail levels.
Without mipmaps, faraway views yield badly filtered samples and spurious, noisy texture updates that do not converge to the correct solution. (c) Convergence
of the learned texture compared to the reference texture. Learning rate schedule was optimized for the “no mipmaps” case, and the same schedule was used
with mipmaps.

Initialization 100 iter. 400 iter. 700 iter. 1000 iter.

0 1000

1.0

0.8

0.6

0.4

0.2

0.0

Iterations

E
rr

o
r

Texture color RMSE
Phong color RMSE
Phong exponent rel. error

500250 750

Fig. 7. Optimizing environment map texture and Phong BRDF parameters
in a synthetic test case. Top: Example renderings at various iteration counts.
The texture converges slightly unevenly due to the distribution of indirect
texture lookups, as seen at 100 iterations. Bottom: Convergence of the
learned parameters over the course of optimization.

Limitations. Local shading models, such as the one demonstrated
here, cannot accurately model global phenomena such as interreflec-
tions. If such fidelity is required, a path tracing based differentiable
renderer will be necessary [Li et al. 2018; Loubet et al. 2019; Nimier-
David et al. 2019]. However, there is no inherent limit on the com-
plexity of the local shading model, so e.g. microfacet [Cook and
Torrance 1982] or Gaussian mixture model [Herholz et al. 2016]
BRDFs could be used to seek a better fit to data. Ultimately it de-
pends on the intended use how physically accurate the shading
should be— even a crude approximation of appearance may be suf-
ficient for inferring other unknowns such as pose or geometry. In
Section 5, we demonstrate that in the context of facial performance
capture, the per-frame geometry of skin areas can be accurately re-
covered without any shading at all. In situations like this, striving for
physical fidelity would unnecessarily slow down the optimization.

Initial Final Reference Initial Final Reference

Fig. 8. Two example cases from the cube pose optimization test. With trivial
noise-based regularization, we obtain an average error of 48.62◦ which is
an improvement over the 63.57◦ of Liu et al. [2019], indicating that the blur
and transparency offered by SoftRas are not necessary in this task. The
average error is dominated by local minima where the pose looks correct
but the colors are wrong (see example on the right with ∼180◦ final pose
error— the yellow face should be on top instead of white). Customizing
the optimization method to suit the task better lowers the average error
to 2.61◦. Some cases are impossible due to only one face of the cube being
visible in the reference image, but they are rare enough to not contribute
significantly to the averages.

4.4 Pose Optimization
In the SoftRas paper, Liu et al. [2019] investigate the problem of
resolving the pose of a rendered cube using gradient-based op-
timization of image-space loss. The task is made difficult by an
optimization landscape with many local minima (Figure 8). The
image synthesis model of SoftRas allows turning all surfaces par-
tially transparent and blurring them by an arbitrary amount. This
results in a smoother loss function and a modest improvement in
the resolved poses.
To demonstrate that the nonstandard image synthesis model of

SoftRas is not necessary for solving this task, we focus on the opti-
mization process instead of manipulating the rendering model. A
simple and efficient way to discourage local minima in a stochastic
fashion is to add noise to the unknown parameters5 during opti-
mization. Indeed, running the optimization for 10k iterations using
Adam and ramping down the noise strength from 1 to 0.003 over
the course of optimization yields an average pose error of 48.62◦
measured over 100 random trials. This is an improvement over the
best result of 63.57◦ reported by Liu et al. [2019], indicating that
5We represent the pose as a quaternion. Noise is applied by constructing a random
quaternion and mixing it with the pose using spherical interpolation [Shoemake 1985].

ACM Trans. Graph., Vol. 39, No. 6, Article 194. Publication date: December 2020.

194:10 • Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo Aila

noise-based regularization is at least as effective as their approach
based on transparency and blur.
However, we note that gradient descent from a random initial

state is an ineffective way to solve this problem. Splitting the opti-
mization into two phases—first greedily seeking for a good initial
pose by applying ramped-down noise in a gradient-free fashion,
and then continuing with Adam from the pose with the smallest
image-space loss— lowers the average error to 22.49◦. As a fur-
ther task-specific optimization, we can take the symmetries of the
cube into account and customize the noise to incorporate random
symmetry-preserving rotations. This effectively bridges the local
minima with similar pose but different color combinations and low-
ers the average error to 2.61◦.

4.5 Performance
To assess the performance of our method, we selected 14 meshes
of varying triangle counts from the ShapeNet database [Chang
et al. 2015]. We rendered these meshes using both our method and
two comparison methods in multiple resolutions. As comparison
methods we used the official implementation of Soft Rasterizer
[Liu et al. 2019], and PyTorch3D [Ravi et al. 2020], a more recent
differentiable rasterization library for PyTorch. The test was set up
to include both forward and gradient evaluations, reflecting the total
cost of including a rendering operation in an optimization task.
Default 𝛾, 𝜎 parameter values were used for Soft Rasterizer. Py-

Torch3D was set up to render one pixel blur radius, one face per
pixel, and soft compositing (SoftGouraudShader). Default bin size
heuristic was enabled. We originally intended to include interior
scenes in our tests, but Soft Rasterizer could not render “in-scene”
viewpoints due to lack of clipping, making triangles behind the
camera render erroneously in front of the camera. Therefore, we
limited our test to individual objects rendered in front of the camera.
All tests were run on a single NVIDIA TITAN V GPU with 12GB of
memory.

Results of the test are summarized in Table 2. We can see that our
method is much less sensitive to triangle and pixel counts than the
comparison methods. Soft Rasterizer slows down quickly because
it tests each triangle for every pixel, and consequently loses to our
method by several orders of magnitude with nontrivial triangle
counts and resolutions. PyTorch3D fares better than Soft Rasterizer
thanks to its coarse-to-fine rasterization architecture. Still, the per-
formance difference is more than an order of magnitude in our favor
and grows with high resolutions and triangle counts, highlighting
the better scalability of our method.

Occluded vs visible geometry. It is generally desirable that render-
ing performance is not affected by the amount of geometry that is
not visible in the rendered image. Our method employs deferred
shading, and is therefore mostly oblivious to occluded or out-of-
view geometry except at the rasterization step. The same holds for
PyTorch3D when storing just one face per pixel, but its rasterization
step is expensive so it is not obvious how hidden geometry affects
the overall performance.

To quantify the effects of depth complexity, we constructed pairs
of synthetic scenes where the number of triangles and covered pix-
els are held constant but the depth complexity is varied. Specifically,

1 64 256 1024
0

125

100

75

50

25

Our method

PyTorch3D

SoftRas

T
im

e
(m

s)

Mesh complexity

stacked

adjacent

Fig. 9. The effect of geometric configuration on forward + gradient pass
execution times in 1024×1024 resolution. A 8×8 grid base mesh (128 tri-
angles) is repeated 1, 64, 256, or 1024 times (horizontal axis). The repeated
meshes are either stacked in depth direction (dashed lines) or placed adja-
cent to each other on the same plane (solid lines). The meshes are scaled
so that the output image always has the same number of pixels covered.
PyTorch3D [Ravi et al. 2020] scales mostly with the total area of geometry,
occluded or not, whereas our method is not slowed down by hidden geome-
try. SoftRas [Liu et al. 2019] has approximately constant cost per triangle,
and cannot keep up with the other two methods.

we repeat a simple base mesh either so that all copies are visible and
together cover the image, or so that only one is visible and covers
the image while all other copies are hidden behind it. Figure 9 shows
the measured performance as function of geometric complexity and
geometric setup. Resolution is fixed to 1024×1024 and the settings
are otherwise the same as above. PyTorch3D, disregarding the con-
stant cost of ∼50ms, scales strongly with the total area of geometry,
occluded or not. This is due to its software rasterizer resolving visi-
bility so late that practically no work is saved if the tested fragment
is found to be occluded. The performance of our method is mostly
unaffected by the depth complexity, as it uses the hardware raster-
izer with efficient hierarchical depth tests. SoftRas scales linearly
with geometric complexity regardless of the geometric setup, and
does not compare favorably to the other two methods.

5 APPLICATION: FACIAL PERFORMANCE CAPTURE
To illustrate the performance and utility of the design of our differ-
entiable rendering pipeline, we examine how to use it to solve mark-
erless facial performance capture, i.e., inferring time-varying facial
geometry based on multiple camera streams. This is a non-trivial
classical computer graphics problem that has been approached in
several ways in the past. Many methods utilize morphable 3D mod-
els [Blanz and Vetter 1999] that enable approximating the facial
geometry even from monocular data. The downside of this class of
methods is that the obtained geometry is approximate and cannot
fully reproduce intricate motion. High-quality markerless capture
often requires complex capture setups involving structured light
or special cameras [Alexander et al. 2009; Bradley et al. 2010]. The
passive capture method of Beeler et al. [2011] first reconstructs each
frame using a single-shot method [Beeler et al. 2010] and then builds
frame-to-frame correspondences iteratively.

While these methods yield great results, they are fairly complex
and consequently difficult to implement. As a result, the state of the

ACM Trans. Graph., Vol. 39, No. 6, Article 194. Publication date: December 2020.

Modular Primitives for High-Performance Differentiable Rendering • 194:11

Table 2. Performance comparison between our method, the official implementation of Soft Rasterizer (SoftRas) [Liu et al. 2019], and PyTorch3D [Ravi et al.
2020].

Triangles→ 284 352 514 1236 4474 5216 5344 10908 21695 25643 43448 91145 196179 308170
Resolution Rendering + gradients time∗ (ms)

Our
method

256×256 2.13 2.03 1.95 1.89 1.95 2.02 2.02 2.08 2.02 2.05 2.00 2.18 2.97 3.12
512×512 2.26 2.29 2.07 2.08 2.23 2.12 2.08 2.11 2.14 2.20 2.27 2.44 2.66 3.33
1024×1024 2.70 2.94 2.60 2.56 2.52 2.56 2.61 2.59 2.61 2.64 2.66 3.03 3.36 4.13
2048×2048 6.21 6.72 4.31 4.95 4.53 4.58 5.31 4.35 4.95 4.46 4.82 5.64 6.46 6.21
4096×4096 17.73 20.11 12.12 13.18 12.40 12.49 13.29 12.05 12.92 12.39 12.73 14.70 17.73 15.64

SoftRas
[2019]

256×256 7.48 6.76 7.84 7.73 18.11 14.29 10.91 29.21 30.93 49.06 65.21 144.57 331.30 788.92
512×512 10.01 10.42 8.78 10.68 24.05 24.33 24.40 50.09 82.48 99.76 163.51 375.39 865.63 1430.17
1024×1024 20.73 24.55 15.74 22.00 69.43 73.56 74.07 153.14 277.36 336.54 556.92 1250.74 3012.63 4856.97
2048×2048 66.25 86.49 46.66 68.43 250.65 276.06 280.30 557.96 1039.49 1234.61 2044.79 4602.11 11487.70 18402.19
4096×4096 223.88 332.33 163.87 240.71 946.76 1055.14 1082.35 2104.77 4036.47 4768.91 7958.07 17992.60 45499.74 72277.20

PyTorch3D
[2020]

256×256 27.12 27.19 26.81 27.95 27.67 27.14 26.94 28.62 27.93 30.08 32.03 37.52 54.82 115.87
512×512 31.83 30.93 31.08 31.19 31.70 31.82 30.83 32.06 34.84 38.41 41.50 55.53 95.21 158.71
1024×1024 53.70 53.24 52.03 51.38 52.44 52.17 53.02 53.99 58.98 64.87 83.04 140.34 267.45 438.82
2048×2048 156.31 153.17 145.34 141.66 144.91 145.48 141.49 148.75 165.77 182.21 259.04 456.07 930.77 1435.20
4096×4096 571.53 553.69 525.49 513.69 524.58 521.84 508.87 528.99 604.20 677.21 966.76 1754.35 3527.62 5567.26

Speedup factor

Our vs
SoftRas

256×256 3.51 3.33 4.02 4.09 9.29 7.07 5.40 14.04 15.31 23.93 32.60 66.32 111.55 252.86
512×512 4.43 4.55 4.24 5.13 10.78 11.48 11.73 23.74 38.54 45.35 72.03 153.85 325.42 429.48
1024×1024 7.68 8.35 6.05 8.59 27.55 28.73 28.38 59.13 106.27 127.48 209.37 412.79 896.62 1176.02
2048×2048 10.67 12.87 10.83 13.82 55.33 60.28 52.79 128.27 210.00 276.82 424.23 815.98 1778.28 2963.32
4096×4096 12.63 16.53 13.52 18.26 76.35 84.48 81.44 174.67 312.42 384.90 625.14 1223.99 2566.26 4621.30

Our vs
PyTorch3D

256×256 12.73 13.39 13.75 14.79 14.19 13.44 13.34 13.76 13.83 14.67 16.02 17.21 18.46 37.14
512×512 14.08 13.51 15.01 15.00 14.22 15.01 14.82 15.19 16.28 17.46 18.28 22.76 35.79 47.66
1024×1024 19.89 18.11 20.01 20.07 20.81 20.38 20.31 20.85 22.60 24.57 31.22 46.32 79.60 106.25
2048×2048 25.17 22.79 33.72 28.62 31.99 31.76 26.65 34.20 33.49 40.85 53.74 80.86 144.08 231.11
4096×4096 32.24 27.53 43.36 38.97 42.30 41.78 38.29 43.90 46.76 54.66 75.94 119.34 198.96 355.96

∗Execution times include both forward and gradient evaluations for rendering one frame. Each mesh was rendered several times from multiple angles and the
results were averaged to reduce random variation. The exact same meshes, viewpoints, and camera parameters were used for all methods. For our method, we
perform rasterization, attribute interpolation, and antialiasing, but no texturing. For Soft Rasterizer, rasterization with default lighting is computed. PyTorch3D
was set up to perform Gouraud shading, i.e., attribute interpolation.

art in many cases is using commercial capture systems such as DI4D
PRO [2020] or commercial software such as AgisoftMetashape [2020]
and R3DS Wrap [2020]. Our goal is not to attempt to surpass this
state of the art, but to illustrate how far we can get with a near-
trivial formulation as an inverse rendering problem. In particular,
we will not attempt to reconstruct tricky regions such as mouth,
eyes, or hair, but instead focus on skin areas only.
Our test material consists of three performances captured in a

DI4D PRO rig at 29.97 frames per second. There are synchronized 9
camera feeds with 3 in color and 6 in monochrome— for simplicity,
we convert the color reference images to monochrome as well prior
to processing. Resolution of the reference images is 3008×4112
pixels, and the camera intrinsics and extrinsics are known. Lengths
of the three performances (“Neutral”, “Disgust”, and “Anger”) are
89, 123, and 207 frames, respectively.

5.1 Solution via Inverse Rendering
Our goal is to find a global texture and a per-frame mesh so that
when rendered from the known camera positions, the textured
meshes match the reference footage as closely as possible measured

using image-space 𝐿2 loss. We learn the geometry as per-frame de-
formation of a fixed-topology base mesh that has 16 521 vertices and
16 472 original faces that were triangulated into 32 916 triangles for
rendering. The base mesh has texture coordinates referencing a 5:1
aspect ratio texture atlas, and our learned texture is a single-channel
10240×2048 texture initialized to zeros. The texture coordinates of
the base mesh are not modified during optimization.
We do not consider material properties or lighting in our image

synthesis model, and assume skin to be Lambertian and lighting to
be uniform. Neither assumption is valid [Marschner et al. 1999] but
we can still expect the geometry to be reconstructed correctly if this
produces the best achievable images. Capturing material properties
and incident lighting, along with geometry, should be possible with
a more complex rendering pipeline [Liu et al. 2017]. Occasional
convergence problems were caused by variable shadowing under
the nose. We alleviate the problem by passing both rendered and
reference images through a high-pass filter so that all low-frequency
effects are attenuated before computing the image-space loss. This
has the added benefit of making the optimization more resilient to

ACM Trans. Graph., Vol. 39, No. 6, Article 194. Publication date: December 2020.

194:12 • Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo Aila

illumination and shading effects that occur due to changes in head
orientation.

5.2 Parameterization and Regularization
In principle, the vertex positions for every frame could be encoded in
one large matrix to be optimized. However, we decompose the vertex
positions into a matrix product in order to make the optimization
landscape more tractable. One could see our model as a three-layer
dense neural network that maps a one-hot animation frame index
vector into a vector of per-vertex deltas from the base mesh. Even
though using a chain of matrices without nonlinearities does not
increase the expressiveness of the representation, it accelerates
optimization similar to how overparameterization accelerates deep
learning [Arora et al. 2018].
Let us denote the vertex count 𝑛 and the number of reference

frames𝑚. Denoting the 3𝑛 column vector encoding base mesh ver-
tex positions as 𝑽base = [𝑥1, 𝑦1, 𝑧1, 𝑥2, · · ·], the vertex positions for
frame 𝑖 are computed as 𝑽𝑖 = 𝑽base + 𝑴3𝑴2𝑴1𝒘𝑖 , where 𝒘𝑖 is a
one-hot column vector of length𝑚 with entry at index 𝑖 being one.
Matrices𝑴1 and𝑴2 are of size𝑚 ×𝑚, and𝑴3 has size 3𝑛 ×𝑚. The
square matrices 𝑴1 and 𝑴2 are initialized to identity, whereas 𝑴3
is initialized to zero. 𝑴3 can be seen as a learned basis for the mesh
deltas, and 𝑴1 and 𝑴2 acting as a mapping from frame index to
this basis. Finding the geometry thus corresponds to finding values
for 𝑴1,2,3 via optimization.
This formulation has no inherent propensity to, e.g., keep the

surface tessellation of the mesh intact. Because of this, we apply
a mesh Laplacian regularization term that penalizes local curva-
ture changes compared to the base mesh. Sorkine [2005] gives an
overview of Laplacian-based methods for mesh processing. Using
their notation, the uniformly-weighted differential 𝜹𝑗 of vertex 𝒗𝑗 is
𝜹𝑗 = 𝒗𝑗 − 1

|𝑁 𝑗 |
∑
𝑘∈𝑁 𝑗

𝒗𝑘 , where 𝑁 𝑗 is the set of one-ring neighbors
of vertex 𝒗𝑗 . In other words, 𝜹𝑗 is the difference between position of
vertex 𝒗𝑗 and the average position of its neighbors. Our Laplacian
regularization term is 𝐿𝜹 = 1

𝑛

∑
1≤ 𝑗≤𝑛 | |𝜹𝑗 − 𝜹base

𝑗
| |2, i.e., the aver-

age square Euclidean difference between the vertex differentials of
the base mesh and those of the deformed mesh. Although this rep-
resentation is not rotation-invariant [Lipman et al. 2005], we have
not found this to be a problem in practice. Similar regularization
has been used in earlier work on shape inference [Liu et al. 2019].

In addition to texture and geometry, we learn global, per-camera
brightness and contrast adjustment values that are applied to the
rendered images during training. This accounts for differences be-
tween reference images originating from color vs monochrome
cameras. We do not use any form of temporal regularization, i.e.,
there are no terms that would prefer nearby frames to be similar to
each other. Regardless of this, the solution is temporally stable as
can be seen in the accompanying video.

5.3 Optimization
To resolve geometry and texture for a sequence of frames, we ini-
tialize the geometry representation as explained above. In each
iteration, we choose random frame and camera indices, and render
the corresponding mesh using a pipeline similar to one shown in
Figure 1. We perform rendering in the same resolution as reference

images, i.e., 3008×4112 pixels, which limits our minibatch size to
one in practice.

In our primary configuration, optimization is run for 100 000 iter-
ations using Adam optimizer [Kingma and Ba 2015] (𝛽1 = 0.9, 𝛽2 =
0.999) with a base learning rate of 𝜆 = 10−3. The learning rate is
decayed to 10−4 during the last 25% of optimization. High-pass
filtering is computed as 𝑥 ′ = 𝑥 − 0.3·blur (𝑥) where 𝑥 is the ren-
dered/reference image, and blur (𝑥) downsamples the image by a
factor of 32×32 and upsamples it back using an approximate Gauss-
ian filter. Images are compared using 𝐿2 loss, so the overall loss
function with the Laplacian term included is 𝐿 = | |𝑥 ′ − 𝑦′ | |22 + 3𝐿𝜹
where 𝑥 ′ and 𝑦′ are the high-pass filtered rendered and reference
images, respectively. A typical optimization run takes 60–70 min-
utes on a single NVIDIA Tesla V100 GPU, with each optimization
iteration taking approximately 40 milliseconds.
In an additional test, we resolved all three capture sequences

in a single optimization run. This task is complicated by the actor
being positioned slightly differently in each sequence—with just
one base mesh, the alignment is off and large motion of the mesh
is required. To circumvent this problem, we also learn a 3 × 4 rigid
transformation matrix 𝑹𝑗 for each sequence 𝑗 , and apply it before
the vertex deltas, i.e., 𝑽𝑖 = 𝑹𝑗𝑽base + 𝑴3𝑴2𝑴1𝒘𝑖 . In addition we
initialize the texture with one previously solved for the “Neutral”
performance, limited 𝑴2 to 100×100 elements, and adjusted the
dimensions of 𝑴1 and 𝑴3 accordingly. With these modifications
and extending the computation to 800 000 iterations, the optimiza-
tion successfully found a rigid transformation for each sequence
to handle the misalignments, and subsequently solved the vertex
deltas for every frame of the combined set along with a texture that
best fits all three sequences. As a consequence of optimizing a single
texture for the entire material, the mapping between surface and
texture-space points becomes automatically consistent between all
sequences.

5.4 Results
Figure 10 shows an example result of the geometry and texture
optimization in the “Neutral” sequence. For clarity, the wireframes
in Figure 10c–e include only the edges of original base mesh instead
of the triangulated version. See the accompanying video for the
sequences and our reconstructions, as well as the progression of
geometry and texture during training.
In our base mesh, the holes for mouth and eyes are simply cov-

ered with triangles in order to avoid spurious visibility leaks to the
opposite side of the mesh. Obviously, this does not allow faithful
reconstruction of mouth and eyes, because eyes have strong view-
dependent reflections, and mouth has complex internal geometry.
As such, the optimization ends up texturing these covering triangles
only somewhat believably. Hair becomes similarly approximated by
the learned texture.
Figure 11 shows closeups of the nose region in five frames se-

lected from sequences “Neutral” and “Disgust”. There is a surprising
amount of fine-grained motion, and our method captures this very
accurately as illustrated in the figure. We obtained a 3D reconstruc-
tion from DI4D [DI4D 2020] for comparison purposes, and it shows
markedly less deformation and does not align properly with the

ACM Trans. Graph., Vol. 39, No. 6, Article 194. Publication date: December 2020.

Modular Primitives for High-Performance Differentiable Rendering • 194:13

(a) Reference (b) Our reconstruction (c) With wireframe (d) Wireframe only (e) Base mesh

Fig. 10. An example frame from the reconstruction of a 89-frame sequence. (a) One of the 9 camera images for the frame. (b–d) Our reconstructed texture and
geometry, rendered from the same viewpoint using the known camera parameters. (e) Base mesh 𝑽base used as the starting point for optimization.

Re
fe
re
nc
e

O
ur

re
nd

er
in
g

D
I4
D
[2
02
0]

D
iff
er
en
ce
,O

ur
D
iff
er
en
ce
,D

I4
D

Fig. 11. Closeup of the nose reveals significant motion and deformation.
Our solution reproduces the changes in geometry faithfully, while the so-
lution from DI4D [2020] severely attenuates the deformations. False-color
difference images (red/blue = brighter/darker than reference) highlight the
geometric discrepancies around the nostrils. In our solution, the geometric
silhouettes are located correctly and the differences are only due to defocus
blur in the reference images that is lacking in our renderings. Right: The
DI4D solution did not attempt to recover the motion of ears. We placed no
constraints on which vertices are allowed to move during optimization, and
thus also captured this motion.

camera images. Their optical flow based reconstruction does not

“Neutral” (89 frames) “Disgust” (123 frames) “Anger” (207 frames)

Re
fe
re
nc
e

O
ur

re
co
ns
tr
uc
tio

n

Fig. 12. Example reconstructions from the optimization of three sequences
as a single 419-frame sequence, starting from the same base mesh as shown
in Figure 10e. Because a single texture is solved for all frames, the vertex to
skin correspondence is consistent across all sequences.

attempt to track areas that lack high-quality multi-view observa-
tions such as ears and nostrils, whereas our solution automatically
reconstructs this motion as well.
Figure 12 shows three example frames from the test where all

three performances were resolved at once. In these selected frames,
the mouth region looks reasonable, but the “Anger” sequence ex-
hibits artifacts around the mouth in many frames. This is not sur-
prising—our model is unable to render the mouth adequately, so
the optimum may be far from correct. Nonetheless, the solution is
otherwise temporally stable, and the motion and texture of skin

ACM Trans. Graph., Vol. 39, No. 6, Article 194. Publication date: December 2020.

194:14 • Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo Aila

areas are reconstructed well. As the same texture and texture coordi-
nates are used for all frames, our method provides highly consistent
vertex to skin correspondence across all sequences.

6 DISCUSSION AND FUTURE WORK
We have demonstrated a modular differentiable renderer design
capable of rendering high-resolution images of complex 3D scenes
up to several orders of magnitude faster than prior approaches,
while supporting crucial features such as filtered texture mapping
with correct gradients. We believe that a high-performance differ-
entiable renderer enables countless uses in inverse graphics, gener-
ative modeling, and other computer vision and AI problems, and to
help this development, have made our library publicly available at
https://github.com/NVlabs/nvdiffrast.

As a practical use case whose success hinges on high-performance
differentiable rendering performance, we have demonstrated that
multi-view facial performance capture from synchronized high-
resolution video cameras can be solved accurately by casting it as a
simple inverse rendering problem. It will be interesting to extend
this solution to joint material appearance capture, dynamic textures,
as well as custom solutions for the eyes, mouth, and hair, integrated
as a single optimization problem.
There may exist specific circumstances and applications (e.g.,

discovery of occluded geometry) where the all-transparent image
formation model used by several earlier differentiable renderers
may be beneficial for optimization. However, we believe that such
problems can also be approached in a principled way via careful
choices for mesh parameterization, regularization, and optimiza-
tion methods, while following the standard occlusion model of the
modern graphics hardware pipeline.

ACKNOWLEDGMENTS
We thank Simon Yuen for providing input and comparison data
for the facial performance capture experiment, David Luebke for
comments, and Sanja Fidler and Wenzheng Chen for discussions on
previous work.

REFERENCES
Agisoft. 2020. Agisoft Metashape. https://www.agisoft.com/
Oleg Alexander, Mike Rogers, William Lambeth, Matt Chiang, and Paul Debevec.

2009. The Digital Emily Project: Photoreal Facial Modeling and Animation. In
ACM SIGGRAPH 2009 Courses (SIGGRAPH ’09).

Sanjeev Arora, Nadav Cohen, and Elad Hazan. 2018. On the Optimization of Deep
Networks: Implicit Acceleration by Overparameterization. In ICML (Proceedings of
Machine Learning Research, Vol. 80). 244–253.

Thabo Beeler, Bernd Bickel, Paul Beardsley, Bob Sumner, and Markus Gross. 2010.
High-Quality Single-Shot Capture of Facial Geometry. ACM Trans. Graph. 29, 4
(2010).

Thabo Beeler, Fabian Hahn, Derek Bradley, Bernd Bickel, Paul Beardsley, Craig Gots-
man, Robert W. Sumner, and Markus Gross. 2011. High-Quality Passive Facial
Performance Capture Using Anchor Frames. ACM Trans. Graph. 30, 4 (2011).

Volker Blanz and Thomas Vetter. 1999. A Morphable Model for the Synthesis of 3D
Faces (SIGGRAPH ’99). 187–194.

Derek Bradley,WolfgangHeidrich, Tiberiu Popa, and Alla Sheffer. 2010. High Resolution
Passive Facial Performance Capture. ACM Trans. Graph. 29, 4 (2010).

Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang,
Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi,
and Fisher Yu. 2015. ShapeNet: An Information-Rich 3D Model Repository. Technical
Report arXiv:1512.03012 [cs.GR]. Stanford University — Princeton University —
Toyota Technological Institute at Chicago.

Wenzheng Chen, Jun Gao, Huan Ling, Edward Smith, Jaakko Lehtinen, Alec Jacobson,
and Sanja Fidler. 2019. Learning to Predict 3D Objects with an Interpolation-based
Differentiable Renderer. In Advances In Neural Information Processing Systems.

R. L. Cook and K. E. Torrance. 1982. A Reflectance Model for Computer Graphics. ACM
Trans. Graph. 1, 1 (1982), 7–24.

Martin de La Gorce, David J. Fleet, and Nikos Paragios. 2011. Model-Based 3D Hand
Pose Estimation from Monocular Video. IEEE Transactions on Pattern Analysis and
Machine Intelligence 33, 9 (2011), 1793–1805.

Michael Deering, StephanieWinner, Bic Schediwy, Chris Duffy, andNeil Hunt. 1988. The
Triangle Processor and Normal Vector Shader: A VLSI System for High Performance
Graphics. In SIGGRAPH ’88. 21–30.

DI4D. 2020. DI4D PRO System. https://www.di4d.com/di4d-pro/
Ned Greene. 1986. Environment Mapping and Other Applications of World Projections.

IEEE Computer Graphics and Applications 6, 11 (1986), 21–29.
Sebastian Herholz, Oskar Elek, Jiří Vorba, Hendrik Lensch, and Jaroslav Křivánek. 2016.

Product Importance Sampling for Light Transport Path Guiding. Computer Graphics
Forum 35, 4 (2016), 67–77.

André Jalobeanu, Frank O. Kuehnel, and John C. Stutz. 2004. Modeling Images of
Natural 3D Surfaces: Overview and Potential Applications. 2004 Conference on
Computer Vision and Pattern Recognition Workshop (2004).

Jorge Jimenez, Diego Gutierrez, Jason Yang, Alexander Reshetov, Pete Demoreuille,
Tobias Berghoff, Cedric Perthuis, Henry Yu, MorganMcGuire, Timothy Lottes, Hugh
Malan, Emil Persson, Dmitry Andreev, and Tiago Sousa. 2011. Filtering Approaches
for Real-Time Anti-Aliasing. In ACM SIGGRAPH Courses.

Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. 2018. Neural 3D Mesh Renderer.
In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization.
In ICLR.

Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. 2018. Differentiable
Monte Carlo Ray Tracing through Edge Sampling. ACM Trans. Graph. (Proc. SIG-
GRAPH Asia) 37, 6 (2018), 222:1–222:11.

Yaron Lipman, Olga Sorkine, David Levin, and Daniel Cohen-Or. 2005. Linear Rotation-
Invariant Coordinates for Meshes. ACM Trans. Graph. 24, 3 (2005), 479–487.

Guilin Liu, Duygu Ceylan, Ersin Yumer, Jimei Yang, and Jyh-Ming Lien. 2017. Material
Editing Using a Physically Based Rendering Network. ICCV (2017), 2280–2288.

Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. 2019. Soft Rasterizer: A Differentiable
Renderer for Image-based 3D Reasoning. In ICCV.

Matthew M. Loper and Michael J. Black. 2014. OpenDR: An Approximate Differentiable
Renderer. In ECCV 2014, Vol. 8695. 154–169.

Guillaume Loubet, Nicolas Holzschuch, and Wenzel Jakob. 2019. Reparameterizing
Discontinuous Integrands for Differentiable Rendering. ACM Trans. Graph. (Proc.
SIGGRAPH Asia) 38, 6 (2019).

Hugh Malan. 2010. Edge Anti-aliasing by Post-Processing. In GPU Pro, Wolfgang Engel
(Ed.). A K Peters, 265–289.

Steve Marschner, Stephen H. Westin, Eric P. Lafortune, Kenneth E. Torrance, and
Donald P. Greenberg. 1999. Image-Based BRDF Measurement Including Human
Skin. In Rendering Techniques.

Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. 2019. Mitsuba 2:
A Retargetable Forward and Inverse Renderer. ACM Trans. Graph. 38, 6 (2019).

NVIDIA. 2018. NVIDIA Turing GPU Architecture. Technical Report.
Gustavo Patow and Xavier Pueyo. 2003. A Survey of Inverse Rendering Problems.

Computer Graphics Forum 22, 4 (2003), 663–687.
Emil Persson. 2011. Geometric Post-Process Anti-Aliasing. http://www.humus.name/

index.php?page=3D&ID=86
Bui Tuong Phong. 1975. Illumination for Computer Generated Pictures. Commun. ACM

18, 6 (1975), 311–317.
R3DS. 2020. R3DS Wrap. https://www.russian3dscanner.com/
Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor Gordon, Wan-Yen Lo,

Justin Johnson, and Georgia Gkioxari. 2020. PyTorch3D. https://github.com/
facebookresearch/pytorch3d

Andreas Schilling, Günter Knittel, and Wolfgang Strasser. 1996. Texram: A Smart
Memory for Texturing. IEEE Computer Graphics and Applications 16, 3 (1996),
32–41.

Ken Shoemake. 1985. Animating Rotation with Quaternion Curves. SIGGRAPH Comput.
Graph. 19, 3 (1985), 245–254.

Olga Sorkine. 2005. Laplacian Mesh Processing. In Eurographics 2005 - State of the Art
Reports.

ACM Trans. Graph., Vol. 39, No. 6, Article 194. Publication date: December 2020.

https://github.com/NVlabs/nvdiffrast
https://www.agisoft.com/
https://www.di4d.com/di4d-pro/
http://www.humus.name/index.php?page=3D&ID=86
http://www.humus.name/index.php?page=3D&ID=86
https://www.russian3dscanner.com/
https://github.com/facebookresearch/pytorch3d
https://github.com/facebookresearch/pytorch3d

	Abstract
	1 Introduction
	2 Related Work
	3 Differentiable Rendering Primitives
	3.1 Design Goals
	3.2 System Design
	3.3 Rasterization
	3.4 Interpolation
	3.5 Texture Mapping
	3.6 Analytic Antialiasing for Visibility Gradients
	3.7 Discussion

	4 Analysis
	4.1 Visibility Gradients
	4.2 Texture Filtering
	4.3 Indirect Texturing, BRDF Optimization
	4.4 Pose Optimization
	4.5 Performance

	5 Application: Facial Performance Capture
	5.1 Solution via Inverse Rendering
	5.2 Parameterization and Regularization
	5.3 Optimization
	5.4 Results

	6 Discussion and Future Work
	Acknowledgments
	References

