
EUROGRAPHICS 2006 / E. Gröller and L. Szirmay-Kalos
(Guest Editors)

Volume 25 (2006), Number 3

An Improved Physically-Based
Soft Shadow Volume Algorithm

Jaakko Lehtinen1,2 Samuli Laine1,3 Timo Aila1,3

1 Helsinki University of Technology 2 Remedy Entertainment, Ltd. 3 Hybrid Graphics, Ltd.

Abstract

We identify and analyze several performance problems in a state-of-the-art physically-based soft shadow volume
algorithm, and present an improved method that alleviates these problems by replacing an overly conservative spa-
tial acceleration structure by a more efficient one. The new technique consistently outperforms both the previous
method and a ray tracing-based reference solution in several realistic situations while retaining the correctness of
the solution and other desirable characteristics of the previous method. These include the unintrusiveness of the
original algorithm, meaning that our method can be used as a black-box shadow solver in any offline renderer
without requiring multiple passes over the image or other special accommodation. We achieve speedup factors
from 1.6 to 12.3 when compared to the previous method.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Three-Dimensional Graphics and Realism]:
Shadowing

1 Introduction

Soft shadows are no doubt one of the key features that dis-
tinguish realistic images from those that look unnatural. An
ever-increasing number of algorithms have been proposed
for the task, but the computation of physically-based soft
shadows remains costly, and is avoided in production when-
ever possible. In practice, soft shadow effects are most often
produced using approximate methods or pure hacks.

Proper (“physically correct”) determination of a soft
shadow requires solving for the exact visibility relations be-
tween a pixel being shaded and all points of an area light
source. This visibility function is included in an integrand
that is evaluated over the light source; this is called the re-
flectance equation. Most methods discretize the reflectance
equation using some sort of stochastic quadrature by placing
a large number of sample points on the light source where
the integrand (including visibility) is evaluated. Still, the de-
termination whether or not a line-of-sight exists between the
point being shaded and possibly several hundreds of these
sample points remains slow using traditional methods.

Because of the above-mentioned difficulty, a significant
number of soft shadow algorithms are approximate; they

Figure 1: Physically-based soft shadows in a 900k trian-
gle scene. Here the previous soft shadow volume method of
Laine et al. [LAA∗05] is slower than the reference ray tracer,
while we achieve a speedup factor of 12.3 over the previous
method and a factor of 6.8 over the reference ray tracer.

produce an image that has soft shadows, but they are not
based on true visibility but rather on some simplified as-
sumption. There are a number of special cases where ap-
proximate algorithms produce physically correct results, but
these are exceptions rather than the rule. Furthermore, mea-
suring and predicting the quality of approximations has re-

c© The Eurographics Association and Blackwell Publishing 2006. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.



Lehtinen, Laine, Aila / An Improved Physically-Based Soft Shadow Volume Algorithm

ceived little attention. In contrast, this work focuses on the
determination of correct visibility and thus the method pre-
sented herein is not approximate: It will produce the correct
image, bar the noise inherent in any method that evaluates
integrals using a limited number of point samples.

Until recently, efficient determination of such physically-
based soft shadows was an unsolved problem in most cases
of interest, and the best solution has been to bite the bullet
and sample the visibility for each light sample using a ray
tracer. Despite the often-cited logarithmic complexity of ray
tracers, the cost of a shadow query increases linearly with
the number of light source samples. Keeping the amount of
work at a tolerable level requires, in practice, an adaptive
anti-aliasing scheme for avoiding shadow tests where they
are not needed, and, of course, using as few light source
samples as possible. For instance, texturing helps masking
the possible noise in the shadows, thus enabling the use of
fewer samples. Also, a voting scheme may be used for skip-
ping work; for instance, if the first 50% of the shadow rays
agree, the rest can be skipped. This of course compromises,
strictly speaking, the correctness of the result.

Recently, Laine et al. [LAA∗05] introduced a novel soft
shadow algorithm that takes a fundamentally different ap-
proach. We review the method in more detail in Section 2.1.
Briefly, the algorithm is based on tracking visibility events
between a planar area light source and the point being
shaded. This technique trades the brute-force per-ray visibil-
ity computation to computing the depth complexity of each
light sample w.r.t. the point being shaded using silhouette
information. As demonstrated by the authors, this is often
significantly less costly than directly sampling the visibility
for each sample. However, the spatial acceleration structure
used in the algorithm has several weaknesses that render the
algorithm overly sensitive to issues such as the size of the
scene and the relative orientations of the light source and the
camera. In fact, we show that the algorithm can be “broken”
by some very simple cases, in the sense that its performance
degrades to the level of the reference ray tracer or even be-
low that. Our present algorithm is a direct successor of this
method, but because of a more suitable spatial data structure,
performs better than the original algorithm (and the refer-
ence ray-tracer) in all our test cases.

Contributions. We identify and analyze the performance
problems of the hemicube-like data structure used by Laine
et al. in their original soft shadow volume algorithm for iden-
tifying the penumbra wedges that potentially affect a point
being shaded. Then we present a novel data structure for re-
placing the hemicube, and demonstrate by several examples
that it outperforms the original technique in several situa-
tions, particularly in cases where the original method has
the greatest difficulties (Figure 1). We stress that our new
method has never performed worse than the original method
in any of the hundreds of test renderings made during the
preparation of this work.

2 Previous Work

This section reviews algorithms that create physically-
based soft shadows from area light sources. Additionally,
a vast amount of literature exists for generation of approx-
imate soft shadows [RSC87, HLHS03] and hard shadows
from point lights [WPF90].

Stochastic ray tracing Stochastic ray tracing algorithms
compute shadows by sampling an area light source using
shadow rays [CPC84]. In order to get smooth and temporally
coherent penumbra regions, hundreds of shadow rays are
often needed for each point to be shaded. The intersection
tests can be accelerated by employing variants of shadow
cache [HG86], and the distribution of the samples can be im-
proved by using variants of importance sampling [SWZ96].

Tracing thick rays Heckbert and Hanrahan [HH84] trace
beams instead of individual rays. Occlusion is taken into
account by clipping the beam with the occluding geome-
try. In highly tessellated scenes, the beam geometry quickly
becomes prohibitively complex, and the performance de-
grades due to lost coherence. Ghazanfarpour and Hasen-
fratz [GH98] describe a variant of beam tracing that does
not clip the beam geometry, but instead subdivides the beam
recursively until a specified subdivision limit is reached or
the beam is either fully lit or fully occluded with respect to a
single triangle. Pencil tracing [STN87] processes sets of rays
in the vicinity of a given ray. It handles refractions more ac-
curately than beam tracing, and also provides error tolerance
analysis in an elegant manner.

Techniques related to shadow volumes Nishita and Naka-
mae [NN83] use two shadow volumes [Cro77] for identi-
fying the parts of the scene that lie within the penumbra.
Soft shadow computations are performed only for polygons
that intersect the penumbra. Silhouette edges of the shadow
casters are projected onto the light source, and clipped to its
borders. Finally, irradiance is computed using an exact ana-
lytic formula. Shadow casters must be decomposed into sets
of convex polyhedra, which limits the practicality of the ap-
proach.

Chin and Feiner [CF92] construct separate BSP trees for
the scene, for the umbra volume and for the outer penumbra
volume. Shadow receivers are then classified into three re-
gions: fully lit, umbra, and penumbra. An analytic shadow
term is computed by traversing the BSP tree of the scene
and clipping away the occluded parts of the polygonal light
source. Tanaka and Takahashi [TT97] propose culling meth-
ods for efficiently determining the set of objects that can af-
fect the shadowing of a given point.

Assarsson and Akenine-Möller [AAM03] describe an ap-
proximate soft shadow volume algorithm, which offers real-
time performance in simple scenes. Two gross approxima-
tions are made: assumption that the silhouette of an object is
constant from all receiver points, and a heuristic occluder fu-
sion method. Laine et al. [LAA∗05] remove these limitations
in the context of ray tracing. As our algorithm is an exten-

c© The Eurographics Association and Blackwell Publishing 2006.



Lehtinen, Laine, Aila / An Improved Physically-Based Soft Shadow Volume Algorithm

sion to their work, the algorithm is reviewed more closely in
Section 2.1.

Laine and Aila [LA05] transpose the processing order of
ray tracing. Instead of searching for a triangle that blocks the
current ray, they find all rays that are blocked by the current
triangle. This leads to different scalability characteristics and
memory requirements compared to ray tracing.

Tracking visibility events The visibility skeleton [DDP97]
finds and stores all visibility events that cause discontinu-
ities in visibility or shading. Illumination due to an area
light source can be accurately computed for any point in
the scene, but unfortunately the preprocessing and storage
requirements are substantial. Duguet and Drettakis [DD02]
present a numerically robust variant. Stark and Riesen-
feld [SR00] describe a robust technique for analytic eval-
uation of irradiance from an uniformly emitting source to
a single point. Discontinuity meshing [Hec92, LTG92] sub-
divides receiver geometry along shadow boundaries. Back
projection algorithms [DF94, SG94] track visibility events
to build a data structure for efficiently determining the vis-
ible parts of a light source. These techniques have trouble
scaling to complex scenes, and the algorithms are also prone
to numerical inaccuracies.

Miscellaneous techniques Soler and Sillion [SS98] ap-
proximate soft shadows using convolution, and present a hi-
erarchical algorithm that drives the approximation error be-
low a threshold value. Agrawala et al. [ARHM00] present
an image-based soft shadow algorithm that uses layered
attenuation maps for fast approximations. A coherent ray
tracer is used for generating higher-quality images. Bala
et al. [BWG03] approximate soft shadows by computing
the shadowed illumination in a sparse set of points, and
then filtering the output image by taking into account im-
portant discontinuities such as shadow boundaries. Parker
et al. [PSS98] render soft shadows at interactive rates in a
parallel ray tracer by using only a single sample per pixel
and “soft-edged” objects. Their algorithm is very fast, but
not physically-based.

2.1 Soft shadow volumes for ray tracing
The soft shadow volume method of Laine et al. [LAA∗05]

is based on the idea of tracking the changes in depth com-
plexity of the light source samples as seen from the point
being shaded. The depth complexity is defined as the num-
ber of occluding surfaces pierced by a ray from the point
being shaded to the light sample. As a corollary of noting
that the depth complexity between the light source and the
point being shaded only changes where there is a silhouette
edge between the light source and the point being shaded,
they observe that silhouette edges (or more precisely, their
projections onto the plane of the light source as seen from
the point being shaded) are the generalized derivatives of the
depth-complexity function. The technique then simply inte-
grates these derivatives to yield a relative depth complexity
for each light sample. Since the integral is unique only up to

a constant, a single reference ray needs to be cast to the light
sample that has the lowest relative depth complexity. If the
ray is not blocked, all the light samples that share this same
relative depth complexity are visible while the rest are oc-
cluded, and if the reference ray is blocked, all light samples
are occluded.

The algorithm utilizes the penumbra wedges of Akenine-
Möller and Assarsson [AAM03] for determining the regions
of space in which a given edge potentially affects the visibil-
ity of the light source. A penumbra wedge due to an a planar
area light source and an edge of an occluder is defined as
the convex volume of space from which the generating edge
overlaps the light source when projected onto the plane of
the light source. The wedges are constructed easily by find-
ing the separating planes defined by the light source and
the edge. Note that the wedges are always convex regardless
of the geometry of the occluders, and thus no restrictions
on the occluding geometry are imposed. Naturally, wedges
need to be constructed only for edges that are silhouettes as
seen from some point on the light source, as only they can
affect the depth complexity integration.

Laine et al. use a hemicube-like spatial acceleration struc-
ture for finding the set of edges whose projections, as seen
from the point being shaded, overlap the light source. The
hemicube is centered at the light source, and its size chosen
so that it encloses the entire scene. All penumbra wedges
are intersected with the sides of the hemicube, and each
hemicube cell maintains a list of wedges whose footprint
overlaps with the cell even partially. The hemicube is en-
coded using a quadtree for reducing the memory consump-
tion. Then, a set of wedges that may contain the point
to be shaded is obtained by projecting the point onto the
hemicube using the center of the light source as the center-
of-projection and merely returning the list of wedges from
the corresponding hemicube cell. This set is conservative in
the sense that it is guaranteed to contain at least all rele-
vant wedges. The avid reader is referred to the original ar-
ticle [LAA∗05] for reassurance of the fact that the centered
projection indeed does not cause any potential wedges to be
missed. However, as we demonstrate in the next section, this
projection — a flattening of the three-dimensional wedges
onto a two-dimensional surface — is a significant cause of
inefficiency because the reported wedge sets often contain a
large proportion of wedges that do not actually contain the
point to be shaded. As our primary algorithmic contribution,
we present a more efficient replacement for the hemicube
(Section 4).

After the hemicube lookup, the wedges reported by the
hemicube are tested, one-by-one, to determine whether or
not they actually contain the point to be shaded, and further-
more whether or not the generating edge is a silhouette as
seen from the point. The wedges that do not satisfy both of
these criteria are discarded. The wedges that pass this test
are exactly the silhouette edges that overlap the light source
as seen from the point being shaded.

c© The Eurographics Association and Blackwell Publishing 2006.



Lehtinen, Laine, Aila / An Improved Physically-Based Soft Shadow Volume Algorithm

The second-last stage of the algorithm is the integration
of the depth complexity using the silhouette edges. Each
edge denotes a relative change in depth complexity, and
since integration is a linear operation, all the silhouette edges
can be processed separately and the results simply summed.
An integer depth complexity counter is maintained for each
light sample, and these counters are updated as each edge is
processed. Finally, after processing all the silhouette edges,
it is obvious that only those samples that have the lowest
depth complexity can be visible, but because we have only
tracked relative changes in depth complexity, they might all
be blocked. Whether or not this is the case is determined by
shooting a single reference ray to one of the samples that
share the lowest depth complexity.

3 Performance Problems in the Previous Method

This section discusses the weaknesses of the hemicube
used by Laine et al. [LAA∗05] for detecting the wedges that
potentially contain a point being shaded. We visualize all
the example cases in 2D for simplicity. In these 2D illustra-
tions the silhouette edge for which a wedge is constructed is
denoted by a red point, and the corresponding wedge is visu-
alized as a light green polygon. The reader may think of the
illustrations as cross-sections of a 3D situation. The region
of space in which the hemicube reports the wedge as a po-
tential candidate is denoted by the darker red polygon. Per-
formance comparisons that quantify the problems are given
in Section 5.

3.1 Orientation of the Light Source and Scene Size
As the original method places the hemicube around the

scene, it is obvious that the orientation of the light source and
the size of the scene play a role in its efficiency. Figures 2a
and 2b depict a simple case of an axis-aligned light source
and a rotated one; it is clear that the hemicube footprints of
the wedges grow when the bottom side of the hemicube is
no longer coplanar with the floor of the scene. This has the
effect that the wedge is reported for a larger number of scene
points, indicated by the larger size of the red polygon. Also,
increasing the size of the scene causes the footprints to grow
due to both the degradation of the relative resolution of the
hemicube and the fact that the footprints of the wedges grow
larger (but only up to a limit, as noted by Laine et al.) as the
distance to the hemicube surface increases. This is illustrated
in Figures 2a and 2c. Note that the rendered image would be
the same in both cases.

3.2 Depth Complexity
As the hemicube essentially projects the geometry of the

wedges onto the sides of the hemicube, all 3D information
about the location of the wedge is lost. This is demonstrated
already by the fact that the red polygon used for marking the
region for which the wedge gets reported always stretches
all the way to the center of the light source. This has the
unfortunate effect that when rendering an image, complex
occluding geometry behind the surface being shaded causes

Figure 3: A 2D cross-section that illustrates silhouette re-
gions. The edge denoted by the red point is a silhouette only
in points contained in its silhouette region, denoted by the
darker blue region. The penumbra wedge denoted by the
lighter green polygon, on the other hand, is the region of
space from which the generating edge projects onto the light
source. The edge is relevant for depth complexity integration
only in receiver points that fall inside both.

extra wedges to be reported for the surface points. This is
illustrated in Figure 2d.

3.3 Silhouette Regions
For an edge shared by two polygons to be relevant in depth

complexity integration, it needs to satisfy two criteria: 1)
Its projection as seen from the point p being shaded must
overlap the light source, and 2) it needs to be a silhouette
as seen from p. Points that fall within the penumbra wedge
constructed from separating planes satisfy criterion 1. We
define the silhouette region for an edge shared by two trian-
gles as the region of space where exactly one of the triangles
is front-facing; this is the set of points that satisfies criterion
2. In contrast to the penumbra wedge formed by separating
planes, the silhouette region is not a simple intersection of
halfspaces, but rather an X-shaped “XOR” region of space
whose points lie in exactly one of the halfspaces formed by
the planes of the triangles associated with the edge. See Fig-
ure 3 for an illustration of the relationship of the penumbra
wedge and a silhouette region. Edges that belong only to a
single polygon cannot be culled using a silhouette region.

Unfortunately for the hemicube, computing the intersec-
tion of the penumbra wedge and the silhouette region and
then projecting the resulting geometry onto the surface of the
hemicube cannot be generally done in a fashion that would
preserve the conservatively correct results obtained by the
central projection used in the hemicube lookup. Because of
this, it is impossible to utilize silhouette regions for tighten-
ing the wedge sets reported for query points. This is a ma-
jor disadvantage that is particularly pronounced in the case
of smooth, curved shadow casters, where the silhouette re-
gions are small due to neighboring polygons being almost
coplanar. Our new query structure is able to account for the
silhouette regions during the query, thus making the query
much more efficient.

c© The Eurographics Association and Blackwell Publishing 2006.



Lehtinen, Laine, Aila / An Improved Physically-Based Soft Shadow Volume Algorithm

(b) (c) (d)

(a)

Figure 2: Illustration of the problems associated with the hemicube structure used by Laine et al. [LAA∗05] for detecting
penumbra wedges that may contain the point being shaded. The hemicube is denoted by the striped pattern around the scene. A
penumbra wedge is denoted by the lighter green polygon, and the darker red polygon depicts the set of scene points for which
the hemicube reports the wedge. (a) and (b) Rotating the light source w.r.t. the scene can cause the sizes of wedge footprints
on the hemicube to grow, resulting in an overly conservative set of wedges. (c) Increasing the depth of the scene also causes
wedge footprints to grow. (d) The hemicube loses all 3D information about the wedge and the query point. None of the wedges
generated by the bunny are relevant for the points on the tabletop, but the hemicube reports them nonetheless.

4 Our Method

As demonstrated in the previous section, the two-
dimensional nature of the hemicube causes it to report overly
conservative sets of wedges in several cases. Most impor-
tantly, its performance is not always predictable; for in-
stance, rotating a light source may affect the shadows only
slightly, but can result in a significant penalty in the origi-
nal algorithm of Laine et al. [LAA∗05] through the growth
of the footprints of the wedges on the hemicube surface. We
address these issues by completely replacing the hemicube
and related computations, whereas the rest of the shadow
volume algorithm stays fundamentally same as the one de-
scribed by Laine et al. In particular, the process of projecting
the silhouette edges onto the plane of the light source and in-
tegrating them is not affected by our improved acceleration
structure.

Our novel structure effectively rasterizes the wedges into
a hierarchical 3D grid whose cells contain lists of wedges
that either intersect or contain the cell. This removes the
inefficiency caused by the 2D projection inherent in the
hemicube method. The grid is implemented as an axis-
aligned 3D BSP tree that covers the scene. If a wedge fully
contains a given internal node of the tree, the wedge is stored
into this node instead of propagating it down towards the
leaves of the tree, as the wedge would cover all the child
nodes anyway. Finding the list of potential wedges for a
given query point proceeds by walking down the tree, start-
ing from the root node, always continuing to the child node
that contains the query point, and collecting the wedges from
every BSP node visited during this traversal.

Figure 4: A 2D cross-section illustrating the “rasterization”
of a wedge into a hierarchical grid. The data structure used
for determining the regions occupied by a given wedge is
an axis-aligned BSP tree, whose nodes keep track of wedges
that either intersect or fully contain the node.

4.1 Lazy Construction of the Wedge BSP Tree

A naïve implementation would construct the wedge BSP
tree once as a pre-process. However, this would lead to sub-
stantial costs in both memory consumption and processing
time, as our BSP is a true three-dimensional structure. In
effect, if the wedges occupying the whole volume of the
scene were determined, the number of leaf nodes in the
BSP tree would grow in O(l3), where l is the “length” of
the scene. This would also be a significant waste because
shadow queries are typically issued only on or near the sur-
faces of the scene, and accurate knowledge of wedge occu-
pancy in free space would have little value in most cases. In
order to obtain a more output-sensitive algorithm, we build

c© The Eurographics Association and Blackwell Publishing 2006.



Lehtinen, Laine, Aila / An Improved Physically-Based Soft Shadow Volume Algorithm

the tree lazily, i.e., intermix the construction of the tree with
the wedge queries, and only subdivide the tree in regions that
actually receive queries. This approach has the major advan-
tage that computation and memory resources are not wasted
on regions of the scene where shadow queries are not made.
This is a significant win, and as our pseudocode in Figure 5
demonstrates, has a simple implementation.

The initialization of our query mechanism simply creates
a root node that encloses the whole scene. Note that this im-
plies the reasonable assumption that shadow queries are only
issued for points inside the bounding box of the scene. All
the wedges found in the initialization stage of the shadow al-
gorithm are initially assigned to the root node. After this the
initialization is complete.

When a shadow query for a point p is performed, the
function WEDGE-QUERY finds the list of wedges that poten-
tially affect the shadow computation for point p. This func-
tion implements our new query structure. The query func-
tion recurses down the BSP tree, starting from the root. At
each node, the function first checks whether the current node
needs to be split, and if so, splits it. If the node has any re-
maining wedges associated with it, they are appended to the
query result — if the current node is an internal node, these
are the wedges that fully contain the node, and in case of a
leaf node, wedges that partially intersect the node. Then, if
the current node is not a leaf, the child node that contains
the query point is determined, and the query recurses to that
node. See Figure 5 for pseudocode.

When a node is split, all the wedges associated with it that
do not fully contain the node are tested against both the child
nodes. Wedges that intersect either child node are added to
the corresponding list associated with the child node. Note
that a wedge may be inserted to both children. Wedges that
fully contain the node being split are not propagated down,
but are instead left in the node. In case of a single wedge,
this process can be thought of as adaptively stopping the
subdivision in regions that are fully occupied by the wedge,
as illustrated in Figure 4. This, incidentally, is conceptually
analogous to the hierarchical 2D rasterization used by Laine
et al. for constructing and encoding the hemicube. The test
that determines whether or not a wedge intersects or cov-
ers a given BSP node is implemented using a fast test that
compares an axis-aligned box against an intersection of half-
spaces. The test is optimized by maintaining an active plane
mask for each wedge stored in each BSP node [BEW∗98].

Nodes are always split in the middle along their longest
axis — this simple strategy ensures that the resulting query
structure is independent of the order of the shadow queries.
We considered using information of the query points for
guiding the splitting process, for instance keeping a single
query point in each node and always splitting in a way that
separates two query points, but we concluded that this would
result in badly balanced trees.

The criterion that determines whether or not to split a node

procedure INIT-BSP(node root_node, wedge list all_wedges)
root_node.bbox← scene.bbox
root_node.wedges← all_wedges

procedure SPLIT-LEAF(node n, int wedges_above)
if n.bbox.max_axis_length < ε then return
if n.wedges.size ≤ 0.25∗wedges_above then return
construct leaf nodes n.left and n.right
{n.left.bbox, n.right.bbox}← split n.bbox along longest axis
for each w in n.wedges do

if w does not contain n.bbox entirely then
remove w from n.wedges
if w intersects n.left.bbox then add w in n.left.wedges
if w intersects n.right.bbox then add w in n.right.wedges

end if
end for

procedure WEDGE-QUERY(point pt)
wedge_list← empty list
n← root_node
repeat

if n is a leaf node then SPLIT-LEAF(n, wedge_list.size)
append n.wedges to wedge_list
if n is a leaf node then return wedge_list
if pt is inside n.left.bbox then

n← n.left
else

n← n.right
end if

end repeat

Figure 5: Pseudocode of the combined wedge query and
BSP construction.

is composed of several heuristics. First, if the node has no
wedges associated with it, obviously nothing needs to be
done. We also limit the recursion by the condition that fur-
ther subdivision is stopped whenever the number of wedges
in a node is less than 25% of the number of wedges already
deposited in the nodes above the current node. This con-
dition essentially stops overly accurate subdivision of the
space in the case of diminishing returns, i.e., where the re-
sulting set of wedges for points in the node could be shrunk
no more than by a small amount even in the limit of infinite
subdivision. We also saw fit to prevent very deep trees by
enforcing a minimum size for the nodes. The threshold used
for all results in this paper is 1/200 of the longest dimension
of the scene. We certainly admit that the use of this sort of
adjustable constant sounds dubious, but in the course of this
work we tried several other stopping criteria, none of which
ever resulted in better performance than the one presented
here. These criteria that were not incorporated into the fi-
nal algorithm included 1) always splitting a leaf node after a
given number of queries has terminated in it, and 2) only re-
lying on the “less than 25% remaining” rule described above.
As use of these criteria consistently resulted in worse per-
formance and higher memory usage, we conclude that our
rule-of-thumb size limitation is relatively robust in practice.

c© The Eurographics Association and Blackwell Publishing 2006.



Lehtinen, Laine, Aila / An Improved Physically-Based Soft Shadow Volume Algorithm

4.2 Accounting for Silhouette Regions
As our BSP is a true three-dimensional structure unlike

the hemicube used in the original algorithm, it is possible to
account for the silhouette region of the edge that generates
the penumbra wedge. As a result the wedge is listed only in
nodes that intersect both the wedge and its associated silhou-
ette region. This is implemented in the geometric test that de-
termines whether or not a wedge intersects a BSP node. The
active plane mask (which is used for tracking the halfspaces
that fully contain the node) is augmented with four extra bits
that indicate the status of the node with respect to the two
triangle planes — the two bits per plane indicate whether or
not the node is fully inside or fully outside the correspond-
ing plane. As with the separating planes that form the wedge,
these bits are used for skipping the tests when the result has
been confirmed for a node and hence for all its children as
well. As demonstrated by our results in Section 5, account-
ing for the silhouette regions increases the efficiency of our
method significantly.

5 Results and Discussion

This section discusses the results obtained using our
novel acceleration structure. We used four scenes of in-
creasing geometric complexity, lit by relatively large area
light sources. Figure 6 shows the renderings used for per-
formance measurements. We tested our improved method
against both the method of Laine et al. [LAA∗05] that uses
the hemicube for determining potential wedges, and a rel-
atively well-optimized ray tracer implemented using cache-
efficient data structures. As the main point of this paper is to
prove the superiority of our method over the previous tech-
nique of Laine et al., we chose not to go through the extra
trouble of comparing against a commercial tracer. The im-
plementation of the method of Laine et al. was the same as
that used by the authors in their original paper. The same
ray tracer was used by both the comparison method and our
new algorithm for tracing the reference rays, and it was used
for computing the reference results as well. Its performance
was 231k-684k shadow rays per second when computing the
reference solutions.

The tests were performed on a PC with a 2.8GHz Pen-
tium 4 processor and 2GB of memory. All timings are in
seconds, and only the time taken by shadow queries is re-
ported; the time taken by the tracing of primary rays and the
computation of illumination based on the visibilities of light
samples is excluded, as these are the same for all three meth-
ods. All the images were rendered in 16 : 9 aspect ratio in
960× 540 resolution. A simple two-pass adaptive anti-alias
scheme was used with all algorithms. The anti-aliasing re-
sulted in 9-34% additional primary rays. All renderings were
made using 256 samples on the light source. The light sam-
ples were distributed in a jittered grid, and a separate pattern
was randomly chosen for each pixel from a fixed set of 64
different patterns. As all algorithms – ours, that of Laine et
al. and the reference method – produce the same image ex-

Scene
Wedges reported Validated Acceptance

by query structure wedges ratio
HC BSP HC BSP

Columns 883.3 137.8 62.5 7.1% 45.4%
Racecar 2708.9 489.9 298.8 11.0% 60.1%
Sponza 1470.0 581.2 409.9 27.9% 70.5%
Max 16515.3 443.2 86.9 0.5% 19.6%

Table 3: Average number of wedges reported per shadow
query by the hemicube (HC) of Laine et al. and our BSP.
Also reported are the average numbers of validated wedges,
i.e., those wedges that passed the projection and silhouette
tests, and the ratio of accepted wedges to reported wedges.

cept for the effect of the random light sampling patterns, we
only present one image of each scene.

As can be seen from Table 1, our new method performs
better than the method of Laine et al. and the reference ray
tracer in all of our test cases. Speedup factors range from 1.6
to 12.3 over the previous method, and from 2.5 to 15.3 over
the reference solver. We note, however, that our test cases
have been constructed in ways that display the shortcom-
ings of the previous method — cases can be constructed eas-
ily where much larger speedups over the reference solution
are obtained by both our new technique and the method of
Laine et al., but typically the difference between the two soft
shadow volume algorithms is small in such cases. We stress
again that our new method has never been outperformed by
the old technique.

Table 2 provides a detailed breakdown of the time con-
sumption. By far the largest difference, compared to Laine
et al., is the time spent on edge validation. This is a direct
result of our new data structure providing a much tighter
set of wedges for consideration, as shown in Table 3. The
time taken by projection, integration and tracing the refer-
ence rays is noticeably higher in the old method. We verified
explicitly that both our method and the old algorithm per-
form exactly the same amount of work in these stages, and
conclude that the differences must be attributed to cache pol-
lution caused by the larger wedge sets processed by the old
method in the edge validation loop.

The memory consumption of our algorithm is larger than
that of the hemicube-based method (see Table 1). However,
since the space is subdivided only where queries are made,
the footprint is more sensitive to the surface area visible in
the picture rather than the sheer volume of the scene. As is
the case with the method of Laine et al., the memory con-
sumption scales linearly w.r.t. the number of wedges gen-
erated by the blockers. This discourages the use of overly-
tessellated scenes and exceptionally large light sources.

Figure 7 contains false-color images that indicate, for
each pixel, the amount of extra wedges reported by the query
structure for both the new method and the hemicube used by
the comparison algorithm. These are wedges that were re-
jected during validation, i.e., they correspond to edges that
are not silhouette edges whose projection overlaps the light

c© The Eurographics Association and Blackwell Publishing 2006.



Lehtinen, Laine, Aila / An Improved Physically-Based Soft Shadow Volume Algorithm

Columns Racecar

Sponza Max

Figure 6: Test scenes used for performance measurements. See Table 1.

Scene #Tris #Primary Total shadow time Speedup factor vs. Memory (MB)
rays Ray tracing Old New Ray tracing Old Old New

Columns 16k 567820 162.79 29.56 10.62 15.3 2.8 9.3 10.9
Racecar 68k 569128 131.03 111.02 52.60 2.5 2.1 13.6 73.7
Sponza 109k 695160 762.85 174.02 110.19 6.9 1.6 10.4 45.2
Max 900k 574208 270.48 490.76 39.80 6.8 12.3 103.5 79.6

Table 1: Total timings, speedup factors and memory consumption for the reference ray tracer, the old method of Laine et
al. [LAA∗05] and our new method.

Scene Initialization BSP Edge Projection + Reference Misc
build + query validation integration ray time

Old New New only Old New Old New Old New Old New
Columns 1.24 0.04 1.22 21.66 2.88 5.01 4.84 0.76 0.72 0.88 0.91
Racecar 2.02 0.15 6.47 79.99 18.89 26.89 25.42 1.37 0.93 0.75 0.73
Sponza 1.82 0.27 5.49 101.23 38.52 63.37 59.97 6.06 4.44 1.54 1.51
Max 15.21 1.98 10.99 458.78 16.37 10.60 7.43 4.76 2.11 1.40 0.90

Table 2: Timing statistics breakdown for our new method in comparison to the old method of Laine et al. [LAA∗05]. The total
time taken by the shadow queries can be found in Table 1.

source as seen from the point to be shaded. The first column
of false-color images visualizes the extra work performed
by the old hemicube-based algorithm. The second column
indicates the number of wedges reported by our novel 3D
structure if the silhouette regions are not accounted for. Fi-
nally, images in the third column depict the number of extra
edges reported by our new query structure. These images,
along with timing breakdowns presented in Table 4 clearly
show that intersecting the wedges with their silhouette re-
gions results in substantial savings. The color ramp used in
the visualizations is shown in Figure 8.

Figure 9 depicts a scene where a race car is lit by an area
light source. In the left image the light source is aligned with
the ground plane, and in the right image the light source is
rotated by 45 degrees along two axes while retaining its cen-

← Best efficiency Worst efficiency→

Figure 8: The color ramp used in efficiency visualization.
Absolute scales are reported in the respective figures.

ter in the same position. In the axis-aligned case the old and
new methods both perform well: The new method requires
5.2 seconds and the old method 7.6 seconds. The situation
is drastically different in the case of the rotated light source
— the new method is essentially unaffected and requires 5.7
seconds in total, while the old method bogs down to 35.9
seconds. The false-color images again depict the number of
superfluous wedges reported by the query structure. This test
clearly demonstrates the effect of the relative orientation of
the light source and the scene, as discussed in Section 3.1.

c© The Eurographics Association and Blackwell Publishing 2006.



Lehtinen, Laine, Aila / An Improved Physically-Based Soft Shadow Volume Algorithm

Laine et al. [LAA∗05] New method without New method Scalesilhouette regions

2711

11309

4802

41054

Figure 7: Visualization of the unnecessary extra work performed by the method of Laine et al. and our method. The second
column shows results obtained using our novel query structure without taking the silhouette regions into account. The scale
denotes the maximum number of extra wedges, indicated by the darkest red in the visualization.

(a) (b)

(c) (d)

(e) (f)

Figure 9: (a) The scene with an aligned light source. (b)
The scene with a rotated light source. (c) and (d) Inefficiency
visualization for the method of Laine et al. (e) and (f) Ineffi-
ciency visualization for novel method.

We performed an additional test confirming the superior
performance of our 3D query structure in case of complex

Scene
BSP Edge Total time

build + query validation
w/o SR SR w/o SR SR w/o SR SR

Columns 1.8 1.2 9.7 2.9 18.2 10.6
Racecar 8.1 6.5 36.0 18.9 73.0 52.6
Sponza 5.2 5.5 54.7 38.5 128.6 110.2
Max 16.0 11.0 63.4 16.4 94.8 39.8

Table 4: The effect of accounting for silhouette regions. All
times are in seconds, and give the timing breakdown of the
relevant portions of the algorithm. The “SR” columns show
timings for our method when silhouette regions are properly
accounted for, and the “w/o SR” columns show timings when
only the penumbra wedges are used.

occluding geometry behind the surfaces shown in the im-
age. We set up a situation where the light source is behind
the camera that is looking head-on to one of the pillars in the
Sponza scene so that the complex tree model lies directly be-
hind the pillar, but only the pillar is visible in the image. The
setup is directly analogous to Figure 2d. Our method ren-
dered the image in 3.7 seconds, while the hemicube-based
method took 91.8 seconds.

c© The Eurographics Association and Blackwell Publishing 2006.



Lehtinen, Laine, Aila / An Improved Physically-Based Soft Shadow Volume Algorithm

6 Discussion and Future Work

By taking up the slack due to the projective nature of the
hemicube of Laine et al., our new method brings the soft
shadow volume algorithm closer to its theoretical maximal
performance. Any query structure cannot, of course, change
the fact that larger light sources subtend larger solid angles,
and thus the number of relevant wedges generated by them is
larger, causing more time to be spent in the integration. How-
ever, as we have demonstrated, the improved soft shadow
volume algorithm performs well in a larger class of render-
ing situations than the previous method, and we believe there
are many practical cases that would benefit greatly from use
of our improved technique.

It would be possible to adapt our method to run in a
smaller or perhaps even fixed memory footprint by collaps-
ing branches of the wedge BSP in regions that have not re-
ceived queries for some time. This would of course be most
efficient when the queries are issued in a spatially coher-
ent order, but we believe that for instance typical pixel-order
traversal should fulfill this criterion sufficiently well. At the
moment we see no other obvious algorithmic improvements,
except perhaps treating the light samples fully hierarchically
when integrating the visibility events.

Acknowledgments The original Sponza Atrium model by
Marko Dabrovic, RNA studio, www.rna.hr. This work was
sponsored in part by the Helsinki Graduate School in Com-
puter Science and Engineering, the Academy of Finland, the
National Technology Agency of Finland, Anima Vitae, Bit-
boys, Hybrid Graphics, and Remedy Entertainment.

References

[AAM03] ASSARSSON U., AKENINE-MÖLLER T.: A
Geometry-Based Soft Shadow Volume Algorithm using
Graphics Hardware. ACM Trans. Graph. 22, 3 (2003), 511–520.

[ARHM00] AGRAWALA M., RAMAMOORTHI R., HEIRICH A.,
MOLL L.: Efficient Image-Based Methods for Rendering Soft
Shadows. In Proc. SIGGRAPH 2000 (2000), pp. 375–384.

[BEW∗98] BISHOP L., EBERLY D., WHITTED T., FINCH M.,
SHANTZ M.: Designing a PC game engine. IEEE Comput.
Graph. Appl. 18, 1 (1998), 46–53.

[BWG03] BALA K., WALTER B., GREENBERG D. P.: Com-
bining Edges and Points for Interactive High-Quality Rendering.
ACM Trans. Graph. 22, 3 (2003), 631–640.

[CF92] CHIN N., FEINER S.: Fast Object-Precision Shadow Gen-
eration for Area Light Source using BSP Trees. In Symposium on
Interactive 3D Graphics (1992), pp. 21–30.

[CPC84] COOK R. L., PORTER T., CARPENTER L.: Distrib-
uted Ray Tracing. In Computer Graphics (Proc. SIGGRAPH 84)
(1984), pp. 137–145.

[Cro77] CROW F.: Shadow Algorithms for Computer Graphics.
In Computer Graphics (Proc. SIGGRAPH 77) (1977), pp. 242–
248.

[DD02] DUGUET F., DRETTAKIS G.: Robust epsilon visibility.
ACM Trans. Graph. 21, 3 (2002), 567–575.

[DDP97] DURAND F., DRETTAKIS G., PUECH C.: The Visi-

bility Skeleton: A Powerful and Efficient Multi-Purpose Global
Visibility Tool. In Proc. SIGGRAPH 97 (1997), pp. 89–100.

[DF94] DRETTAKIS G., FIUME E.: A Fast Shadow Algorithm for
Area Light Sources Using Back Projection. In Proc. SIGGRAPH
94 (1994), pp. 223–230.

[GH98] GHAZANFARPOUR D., HASENFRATZ J.-M.: A Beam
Tracing with Precise Antialiasing for Polyhedral Scenes. Com-
puter Graphics 22, 1 (1998), 103–115.

[Hec92] HECKBERT P.: Discontinuity Meshing for Radiosity. In
Proc. Eurographics Workshop on Rendering (1992), pp. 203–
215.

[HG86] HAINES E. A., GREENBERG D. P.: The Light Buffer: A
Ray Tracer Shadow Testing Accelerator. IEEE Comput. Graph.
Appl. 6, 9 (1986), 6–16.

[HH84] HECKBERT P., HANRAHAN P.: Beam Tracing Polygonal
Objects. In Computer Graphics (Proc. SIGGRAPH 84) (1984),
pp. 119–127.

[HLHS03] HASENFRATZ J.-M., LAPIERRE M., HOLZSCHUCH

N., SILLION F.: A Survey of Real-Time Soft Shadows Algo-
rithms. Computer Graphics Forum, 22, 4 (2003), 753–774.

[LA05] LAINE S., AILA T.: Hierarchical penumbra casting.
Computer Graphics Forum 24, 3 (2005), 313–322.

[LAA∗05] LAINE S., AILA T., ASSARSSON U., LEHTINEN J.,
AKENINE-MÖLLER T.: Soft shadow volumes for ray tracing.
ACM Trans. Graph. 24, 3 (2005), 1156–1165.

[LTG92] LISCHINSKI D., TAMPIERI F., GREENBERG D. P.:
Discontinuity Meshing for Accurate Radiosity. IEEE Comput.
Graph. Appl. 12, 6 (1992), 25–39.

[NN83] NISHITA T., NAKAMAE E.: Half-Tone Representation of
3-D Objects Illuminated by Area Sources or Polyhedron Sources.
In IEEE Computer Software and Application Conference (1983),
pp. 237–242.

[PSS98] PARKER S., SHIRLEY P., SMITS B.: Single Sample Soft
Shadows. Tech. rep., University of Utah, UUCS-98-019, 1998.

[RSC87] REEVES W. T., SALESIN D. H., COOK R. L.: Render-
ing Antialiased Shadows with Depth Maps. In Computer Graph-
ics (Proc. SIGGRAPH 87) (1987), pp. 283–291.

[SG94] STEWART A. J., GHALI S.: Fast Computation of Shadow
Boundaries using Spatial Coherence and Backprojections. In
Proceedings of ACM SIGGRAPH 94 (1994), pp. 231–238.

[SR00] STARK M. M., RIESENFELD R. F.: Exact Illumination
in Polygonal Environments using Vertex Tracing. In Proc. Euro-
graphics Workshop on Rendering (2000), pp. 149–160.

[SS98] SOLER C., SILLION F. X.: Fast Calculation of Soft
Shadow Textures Using Convolution. In Proc. SIGGRAPH 98
(1998), pp. 321–332.

[STN87] SHINYA M., TAKAHASHI T., NAITO S.: Principles and
Applications of Pencil Tracing. In Computer Graphics (Proc.
SIGGRAPH 87) (1987), pp. 45–54.

[SWZ96] SHIRLEY P., WANG C., ZIMMERMAN K.: Monte
Carlo Techniques for Direct Lighting Calculations. ACM Trans.
Graph. 15, 1 (1996), 1–36.

[TT97] TANAKA T., TAKAHASHI T.: Fast Analytic Shading and
Shadowing for Area Light Sources. Computer Graphics Forum,
16, 3 (1997), 231–240.

[WPF90] WOO A., POULIN P., FOURNIER A.: A Survey of
Shadow Algorithms. IEEE Comput. Graph. Appl. 10, 6 (1990),
13–32.

c© The Eurographics Association and Blackwell Publishing 2006.


