
Noise2Noise: Learning Image Restoration without Clean Data

Jaakko Lehtinen1 2 Jacob Munkberg1 Jon Hasselgren1 Samuli Laine1 Tero Karras1 Miika Aittala3 Timo Aila1

Abstract
We apply basic statistical reasoning to signal re-
construction by machine learning – learning to
map corrupted observations to clean signals – with
a simple and powerful conclusion: it is possi-
ble to learn to restore images by only looking at
corrupted examples, at performance at and some-
times exceeding training using clean data, without
explicit image priors or likelihood models of the
corruption. In practice, we show that a single
model learns photographic noise removal, denois-
ing synthetic Monte Carlo images, and reconstruc-
tion of undersampled MRI scans – all corrupted
by different processes – based on noisy data only.

1. Introduction
Signal reconstruction from corrupted or incomplete mea-
surements is an important subfield of statistical data analysis.
Recent advances in deep neural networks have sparked sig-
nificant interest in avoiding the traditional, explicit a priori
statistical modeling of signal corruptions, and instead learn-
ing to map corrupted observations to the unobserved clean
versions. This happens by training a regression model, e.g.,
a convolutional neural network (CNN), with a large number
of pairs (x̂i, yi) of corrupted inputs x̂i and clean targets yi
and minimizing the empirical risk

argmin
θ

∑
i

L (fθ(x̂i), yi) , (1)

where fθ is a parametric family of mappings (e.g., CNNs),
under the loss function L. We use the notation x̂ to un-
derline the fact that the corrupted input x̂ ∼ p(x̂|yi) is a
random variable distributed according to the clean target.
Training data may include, for example, pairs of short and
long exposure photographs of the same scene, incomplete
and complete k-space samplings of magnetic resonance
images, fast-but-noisy and slow-but-converged ray-traced

1NVIDIA 2Aalto University 3MIT CSAIL. Correspondence to:
Jaakko Lehtinen <jlehtinen@nvidia.com>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

renderings of a synthetic scene, etc. Significant advances
have been reported in several applications, including Gaus-
sian denoising, de-JPEG, text removal (Mao et al., 2016),
super-resolution (Ledig et al., 2017), colorization (Zhang
et al., 2016), and image inpainting (Iizuka et al., 2017). Yet,
obtaining clean training targets is often difficult or tedious:
a noise-free photograph requires a long exposure; full MRI
sampling precludes dynamic subjects; etc.

In this work, we observe that we can often learn to turn
bad images into good images by only looking at bad images,
and do this just as well – sometimes even better – as if we
were using clean examples. Further, we require neither an
explicit statistical likelihood model of the corruption nor
an image prior, and instead learn these indirectly from the
training data. (Indeed, in one of our examples, synthetic
Monte Carlo renderings, the non-stationary noise cannot
be characterized analytically.) In addition to denoising, our
observation is directly applicable to inverse problems such
as MRI reconstruction from undersampled data. While our
conclusion is almost trivial from a statistical perspective, it
significantly eases practical learned signal reconstruction by
lifting requirements on availability of training data.

2. Theoretical Background
Assume that we have a set of unreliable measurements
(y1, y2, ...) of the room temperature. A common strategy
for estimating the true unknown temperature is to find a
number z that has the smallest average deviation from the
measurements according to some loss function L:

argmin
z

Ey{L(z, y)}. (2)

For the L2 loss L(z, y) = (z − y)2, this minimum is found
at the arithmetic mean of the observations:

z = Ey{y}. (3)

The L1 loss, the sum of absolute deviations L(z, y) = |z −
y|, in turn, has its optimum at the median of the observations.
The general class of deviation-minimizing estimators are
known as M-estimators (Huber, 1964). From a statistical
viewpoint, summary estimation using these common loss
functions can be seen as ML estimation by interpreting the
loss function as the negative log likelihood.

Noise2Noise: Learning Image Restoration without Clean Data

Training neural network regressors is a generalization of
this point estimation procedure. Observe the form of the
typical training task for a set of input-target pairs (xi, yi),
where the network function fθ(x) is parameterized by θ:

argmin
θ

E(x,y){L(fθ(x), y)}. (4)

Indeed, if we remove the dependency on input data, and
use a trivial fθ that merely outputs a learned scalar, the task
reduces to (2). Conversely, the full training task decomposes
to the same minimization problem at every training sample;
simple manipulations show that (4) is equivalent to

argmin
θ

Ex{Ey|x{L(fθ(x), y)}}. (5)

The network can, in theory, minimize this loss by solving the
point estimation problem separately for each input sample.
Hence, the properties of the underlying loss are inherited by
neural network training.

The usual process of training regressors by Equation 1 over
a finite number of input-target pairs (xi, yi) hides a subtle
point: instead of the 1:1 mapping between inputs and tar-
gets (falsely) implied by that process, in reality the mapping
is multiple-valued. For example, in a superresolution task
(Ledig et al., 2017) over all natural images, a low-resolution
image x can be explained by many different high-resolution
images y, as knowledge about the exact positions and ori-
entations of the edges and texture is lost in decimation. In
other words, p(y|x) is the highly complex distribution of
natural images consistent with the low-resolution x. Train-
ing a neural network regressor using training pairs of low-
and high-resolution images using the L2 loss, the network
learns to output the average of all plausible explanations
(e.g., edges shifted by different amounts), which results in
spatial blurriness for the network’s predictions. A signif-
icant amount of work has been done to combat this well
known tendency, for example by using learned discriminator
functions as losses (Ledig et al., 2017; Isola et al., 2017).

Our observation is that for certain problems this tendency
has an unexpected benefit. A trivial, and, at first sight, use-
less, property of L2 minimization is that on expectation, the
estimate remains unchanged if we replace the targets with
random numbers whose expectations match the targets. This
is easy to see: Equation (3) holds, no matter what particu-
lar distribution the ys are drawn from. Consequently, the
optimal network parameters θ of Equation (5) also remain
unchanged, if input-conditioned target distributions p(y|x)
are replaced with arbitrary distributions that have the same
conditional expected values. This implies that we can, in
principle, corrupt the training targets of a neural network
with zero-mean noise without changing what the network
learns. Combining this with the corrupted inputs from Equa-
tion 1, we are left with the empirical risk minimization task

argmin
θ

∑
i

L (fθ(x̂i), ŷi) , (6)

where both the inputs and the targets are now drawn from
a corrupted distribution (not necessarily the same), condi-
tioned on the underlying, unobserved clean target yi such
that E{ŷi|x̂i} = yi. Given infinite data, the solution is
the same as that of (1). For finite data, the variance is the
average variance of the corruptions in the targets, divided
by the number of training samples (see appendix). Inter-
estingly, none of the above relies on a likelihood model of
the corruption, nor a density model (prior) for the under-
lying clean image manifold. That is, we do not need an
explicit p(noisy|clean) or p(clean), as long as we have data
distributed according to them.

In many image restoration tasks, the expectation of the cor-
rupted input data is the clean target that we seek to restore.
Low-light photography is an example: a long, noise-free ex-
posure is the average of short, independent, noisy exposures.
With this in mind, the above suggests the ability to learn to
remove photon noise given only pairs of noisy images, with
no need for potentially expensive or difficult long exposures.
Similar observations can be made about other loss functions.
For instance, the L1 loss recovers the median of the targets,
meaning that neural networks can be trained to repair im-
ages with significant (up top 50%) outlier content, again
only requiring access to pairs of such corrupted images.

In the next sections, we present a wide variety of examples
demonstrating that these theoretical capabilities are also
efficiently realizable in practice.

3. Practical Experiments
We now experimentally study the practical properties of
noisy-target training. We start with simple noise distribu-
tions (Gaussian, Poisson, Bernoulli) in Sections 3.1 and 3.2,
and continue to the much harder, analytically intractable
Monte Carlo image synthesis noise (Section 3.3). In Sec-
tion 3.4, we show that image reconstruction from sub-
Nyquist spectral samplings in magnetic resonance imaging
(MRI) can be learned from corrupted observations only.

3.1. Additive Gaussian Noise

We will first study the effect of corrupted targets using
synthetic additive Gaussian noise. As the noise has zero
mean, we use the L2 loss for training to recover the mean.

Our baseline is a recent state-of-the-art method ”RED30”
(Mao et al., 2016), a 30-layer hierarchical residual net-
work with 128 feature maps, which has been demonstrated
to be very effective in a wide range of image restoration
tasks, including Gaussian noise. We train the network us-
ing 256×256-pixel crops drawn from the 50k images in

Noise2Noise: Learning Image Restoration without Clean Data

30.5

31

31.5

32

32.5

33

0 20 40 60 80 100 120 140

clean targets noisy targets

29.5

30.5

31.5

32.5

29

29.5

30

30.5

31

31.5

32

32.5

0 50 100 150 200 250 300 350 400 450

2 pix 5 pix 10 pix 20 pix 40 pix

29.5

30.5

31.5

32.5

29

29.5

30

30.5

31

31.5

32

32.5

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Case 1 (trad.) Case 2 Case 3 (N2N)

(a) White Gaussian, σ = 25 (b) Brown Gaussian, σ = 25 (c) Capture budget study (see text)

Figure 1. Denoising performance (dB in KODAK dataset) as a function of training epoch for additive Gaussian noise. (a) For i.i.d. (white)
Gaussian noise, clean and noisy targets lead to very similar convergence speed and eventual quality. (b) For brown Gaussian noise, we
observe that increased inter-pixel noise correlation (wider spatial blur; one graph per bandwidth) slows convergence down, but eventual
performance remains close. (c) Effect of different allocations of a fixed capture budget to noisy vs. clean examples (see text).

Table 1. PSNR results from three test datasets KODAK, BSD300,
and SET14 for Gaussian, Poisson, and Bernoulli noise. The com-
parison methods are BM3D, Inverse Anscombe transform (ANSC),
and deep image prior (DIP).

clean noisy BM3D clean noisy ANSC clean noisy DIP

Kodak 32.50 32.48 31.82 31.52 31.50 29.15 33.01 33.17 30.78

BSD300 31.07 31.06 30.34 30.18 30.16 27.56 31.04 31.16 28.97

Set14 31.31 31.28 30.50 30.07 30.06 28.36 31.51 31.72 30.67

Average 31.63 31.61 30.89 30.59 30.57 28.36 31.85 32.02 30.14

Bernoulli (p=0.5)Gaussian (σ=25) Poisson (λ=30)

the IMAGENET validation set. We furthermore random-
ize the noise standard deviation σ ∈ [0, 50] separately for
each training example, i.e., the network has to estimate the
magnitude of noise while removing it (“blind” denoising).

We use three well-known datasets: BSD300 (Martin et al.,
2001), SET14 (Zeyde et al., 2010), and KODAK1. As sum-
marized in Table 1, the behavior is qualitatively similar
in all three sets, and thus we discuss the averages. When
trained using the standard way with clean targets (Equa-
tion 1), RED30 achieves 31.63± 0.02 dB with σ = 25. The
confidence interval was computed by sampling five random
initializations. The widely used benchmark denoiser BM3D
(Dabov et al., 2007) gives ∼0.7 dB worse results. When we
modify the training to use noisy targets (Equation 6) instead,
the denoising performance remains equally good. Further-
more, the training converges just as quickly, as shown in
Figure 1a. This leads us to conclude that clean targets are
unnecessary in this application. This perhaps surprising
observation holds also with different networks and network
capacities. Figure 2a shows an example result.

For all further tests, we switch from RED30 to a shallower
U-Net (Ronneberger et al., 2015) that is roughly 10× faster
to train and gives similar results (−0.2 dB in Gaussian noise).

1http://r0k.us/graphics/kodak/

The architecture and training parameters are described in
the appendix.

Convergence speed Clearly, every training example asks
for the impossible: there is no way the network could suc-
ceed in transforming one instance of the noise to another.
Consequently, the training loss does actually not decrease
during training, and the loss gradients continue to be quite
large. Why do the larger, noisier gradients not affect con-
vergence speed? While the activation gradients are indeed
noisy, the weight gradients are in fact relatively clean be-
cause Gaussian noise is independent and identically dis-
tributed (i.i.d.) in all pixels, and the weight gradients get
averaged over 216 pixels in our fully convolutional network.

Figure 1b makes the situation harder by introducing inter-
pixel correlation to the noise. This brown additive noise
is obtained by blurring white Gaussian noise by a spatial
Gaussian filter of different bandwidths and scaling to retain
σ = 25. An example is shown in Figure 1b. As the correla-
tion increases, the effective averaging of weight gradients
decreases, and the weight updates become noisier. This
makes the convergence slower, but even with extreme blur,
the eventual quality is similar (within 0.1 dB).

Finite data and capture budget The previous studies re-
lied on the availability of infinitely many noisy examples
produced by adding synthetic noise to clean images. We
now study corrupted vs. clean training data in the realis-
tic scenario of finite data and a fixed capture budget. Our
experiment setup is as follows. Let one ImageNet image
with white additive Gaussian noise at σ = 25 correspond to
one “capture unit” (CU). Suppose that 19 CUs are enough
for a clean capture, so that one noisy realization plus the
clean version (the average of 19 noisy realizations) con-
sumes 20 CU. Let us fix a total capture budget of, say, 2000
CUs. This budget can be allocated between clean latents
(N) and noise realizations per clean latent (M) such that
N ∗M = 2000. In the traditional scenario, we have only
100 training pairs (N = 100, M = 20): a single noisy

Noise2Noise: Learning Image Restoration without Clean Data

realization and the corresponding clean image (= average
of 19 noisy images; Figure 1c, Case 1). We first observe
that using the same captured data as 100 ∗ 20 ∗ 19 = 38000
training pairs with corrupted targets — i.e., for each latent,
forming all the 19 ∗ 20 possible noisy/clean pairs — yields
notably better results (several .1s of dB) than the traditional,
fixed noisy+clean pairs, even if we still only have N = 100
latents (Figure 1c, Case 2). Second, we observe that setting
N = 1000 and M = 2, i.e., increasing the number of clean
latents but only obtaining two noisy realizations of each
(resulting in 2000 training pairs) yields even better results
(again, by several .1s of dB, Figure 1c, Case 3).

We conclude that for additive Gaussian noise, corrupted
targets offer benefits — not just the same performance but
better — over clean targets on two levels: both 1) seeing
more realizations of the corruption for the same latent clean
image, and 2) seeing more latent clean images, even if just
two corrupted realizations of each, are beneficial.

3.2. Other Synthetic Noises

We will now experiment with other types of synthetic noise.
The training setup is the same as described above.

Poisson noise is the dominant source of noise in pho-
tographs. While zero-mean, it is harder to remove because it
is signal-dependent. We use the L2 loss, and vary the noise
magnitude λ ∈ [0, 50] during training. Training with clean
targets results in 30.59± 0.02 dB, while noisy targets give
an equally good 30.57 ± 0.02 dB, again at similar conver-
gence speed. A comparison method (Mäkitalo & Foi, 2011)
that first transforms the input Poisson noise into Gaussian
(Anscombe transform), then denoises by BM3D, and finally
inverts the transform, yields 2 dB less.

Other effects, e.g., dark current and quantization, are domi-
nated by Poisson noise, can be made zero-mean (Hasinoff
et al., 2016), and hence pose no problems for training with
noisy targets. We conclude that noise-free training data is
unnecessary in this application. That said, saturation (gamut
clipping) renders the expectation incorrect due to removing
part of the distribution. As saturation is unwanted for other
reasons too, this is not a significant limitation.

Multiplicative Bernoulli noise (aka binomial noise) con-
structs a random mask m that is 1 for valid pixels and 0 for
zeroed/missing pixels. To avoid backpropagating gradients
from missing pixels, we exclude them from the loss:

argmin
θ

∑
i

(m� (fθ(x̂i)− ŷi))2, (7)

as described by Ulyanov et al. (2017) in the context of their
deep image prior (DIP).

The probability of corrupted pixels is denoted with p; in our
training we vary p ∈ [0.0, 0.95] and during testing p = 0.5.

(a) Gaussian (σ = 25)

B
M

3D

(b) Poisson (λ = 30)

A
N

S
C

O
M

B
E

(c) Bernoulli (p = 0.5)

D
E

E
P

IM
A

G
E

P
R

IO
R

Ground truth Input Our Comparison

Figure 2. Example results for Gaussian, Poisson, and Bernoulli
noise. Our result was computed by using noisy targets — the
corresponding result with clean targets is omitted because it is
virtually identical in all three cases, as discussed in the text. A
different comparison method is used for each noise type.

Training with clean targets gives an average of 31.85 ±
0.03 dB, noisy targets (separate m for input and target) give
a slightly higher 32.02 ± 0.03 dB, possibly because noisy
targets effectively implement a form of dropout (Srivastava
et al., 2014) at the network output. DIP was almost 2 dB
worse – DIP is not a learning-based solution, and as such
very different from our approach, but it shares the property
that neither clean examples nor an explicit model of the
corruption is needed. We used the “Image reconstruction”
setup as described in the DIP supplemental material.2

Text removal Figure 3 demonstrates blind text removal.
The corruption consists of a large, varying number of ran-
dom strings in random places, also on top of each other, and
furthermore so that the font size and color are randomized
as well. The font and string orientation remain fixed.

The network is trained using independently corrupted input
and target pairs. The probability of corrupted pixels p is
approximately [0, 0.5] during training, and p ≈ 0.25 during

2https://dmitryulyanov.github.io/deep image prior

Noise2Noise: Learning Image Restoration without Clean Data

p ≈ 0.04 p ≈ 0.42

Example training pairs Input (p ≈ 0.25) L2 L1 Clean targets Ground truth
17.12 dB 26.89 dB 35.75 dB 35.82 dB PSNR

Figure 3. Removing random text overlays corresponds to seeking the median pixel color, accomplished using the L1 loss. The mean (L2

loss) is not the correct answer: note shift towards mean text color. Only corrupted images shown during training.

p = 0.22 p = 0.81

Example training pairs Input (p = 0.70) L2 / L1 L0 Clean targets Ground truth
8.89 dB 13.02 dB / 16.36 dB 28.43 dB 28.86 dB PSNR

Figure 4. For random impulse noise, the approx. mode-seeking L0 loss performs better than the mean (L2) or median (L1) seeking losses.

-10

-5

0

10% 20% 30% 40% 50% 60% 70% 80% 90%

PSNR delta from clean targets

L0 L1

Figure 5. PSNR of noisy-target training relative to clean targets
with a varying percentage of target pixels corrupted by RGB im-
pulse noise. In this test a separate network was trained for each cor-
ruption level, and the graph was averaged over the KODAK dataset.

testing. In this test the mean (L2 loss) is not the correct
answer because the overlaid text has colors unrelated to the
actual image, and the resulting image would incorrectly tend
towards a linear combination of the right answer and the
average text color (medium gray). However, with any rea-
sonable amount of overlaid text, a pixel retains the original
color more often than not, and therefore the median is the
correct statistic. Hence, we use L1 = |fθ(x̂)− ŷ| as the loss
function. Figure 3 shows an example result.

Random-valued impulse noise replaces some pixels with
noise and retains the colors of others. Instead of the standard

salt and pepper noise (randomly replacing pixels with black
or white), we study a harder distribution where each pixel
is replaced with a random color drawn from the uniform
distribution [0, 1]3 with probability p and retains its color
with probability 1− p. The pixels’ color distributions are a
Dirac at the original color plus a uniform distribution, with
relative weights given by the replacement probability p. In
this case, neither the mean nor the median yield the correct
result; the desired output is the mode of the distribution
(the Dirac spike). The distribution remains unimodal. For
approximate mode seeking, we use an annealed version
of the “L0 loss” function defined as (|fθ(x̂) − ŷ| + ε)γ ,
where ε = 10−8, where γ is annealed linearly from 2 to 0
during training. This annealing did not cause any numerical
issues in our tests. The relationship of the L0 loss and mode
seeking is analyzed in the appendix.

We again train the network using noisy inputs and noisy
targets, where the probability of corrupted pixels is random-
ized separately for each pair from [0, 0.95]. Figure 4 shows
the inference results when 70% input pixels are randomized.
Training with L2 loss biases the results heavily towards gray,
because the result tends towards a linear combination the

Noise2Noise: Learning Image Restoration without Clean Data

correct answer and and mean of the uniform random corrup-
tion. As predicted by theory, the L1 loss gives good results
as long as fewer than 50% of the pixels are randomized,
but beyond that threshold it quickly starts to bias dark and
bright areas towards gray (Figure 5). L0, on the other hand,
shows little bias even with extreme corruptions (e.g. 90%
pixels), because of all the possible pixel values, the correct
answer (e.g. 10%) is still the most common.

3.3. Monte Carlo Rendering

Physically accurate renderings of virtual environments are
most often generated through a process known as Monte
Carlo path tracing. This amounts to drawing random se-
quences of scattering events (“light paths”) in the scene that
connect light sources and virtual sensors, and integrating
the radiance carried by them over all possible paths (Veach
& Guibas, 1995). The Monte Carlo integrator is constructed
such that the intensity of each pixel is the expectation of
the random path sampling process, i.e., the sampling noise
is zero-mean. However, despite decades of research into
importance sampling techniques, little else can be said about
the distribution. It varies from pixel to pixel, heavily de-
pends on the scene configuration and rendering parameters,
and can be arbitrarily multimodal. Some lighting effects,
such as focused caustics, also result in extremely long-tailed
distributions with rare, bright outliers.

All of these effects make the removal of Monte Carlo noise
much more difficult than removing, e.g., Gaussian noise.
On the other hand, the problem is somewhat alleviated by
the possibility of generating auxiliary information that has
been empirically found to correlate with the clean result
during data generation. In our experiments, the denoiser
input consists of not only the per-pixel luminance values,
but also the average albedo (i.e., texture color) and normal
vector of the surfaces visible at each pixel.

High dynamic range (HDR) Even with adequate sam-
pling, the floating-point pixel luminances may differ from
each other by several orders of magnitude. In order to con-
struct an image suitable for the generally 8-bit display de-
vices, this high dynamic range needs to be compressed to a
fixed range using a tone mapping operator (Cerdá-Company
et al., 2016). We use a variant of Reinhard’s global op-
erator (Reinhard et al., 2002): T (v) = (v/(1 + v))1/2.2,
where v is a scalar luminance value, possibly pre-scaled
with an image-wide exposure constant. This operator maps
any v ≥ 0 into range 0 ≤ T (v) < 1.

The combination of virtually unbounded range of lumi-
nances and the nonlinearity of operator T poses a problem.
If we attempt to train a denoiser that outputs luminance
values v, a standard MSE loss L2 = (fθ(x̂)− ŷ)2 will be
dominated by the long-tail effects (outliers) in the targets,
and training does not converge. On the other hand, if the

denoiser were to output tonemapped values T (v), the non-
linearity of T would make the expected value of noisy target
images E{T (v)} different from the clean training target
T (E{v}), leading to incorrect predictions.

A metric often used for measuring the quality of HDR im-
ages is the relative MSE (Rousselle et al., 2011), where
the squared difference is divided by the square of approx-
imate luminance of the pixel, i.e., (fθ(x̂)− ŷ)2/(ŷ + ε)2.
However, this metric suffers from the same nonlinearity
problem as comparing of tonemapped outputs. Therefore,
we propose to use the network output, which tends to-
wards the correct value in the limit, in the denominator:
LHDR = (fθ(x̂)− ŷ)2/(fθ(x̂) + 0.01)2. It can be shown
that LHDR converges to the correct expected value as long
as we consider the gradient of the denominator to be zero.

Finally, we have observed that it is beneficial to tone map
the input image T (x̂) instead of using HDR inputs. The
network continues to output non-tonemapped (linear-scale)
luminance values, retaining the correctness of the expected
value. Figure 6 evaluates the different loss functions.

Denoising Monte Carlo rendered images We trained a
denoiser for Monte Carlo path traced images rendered using
64 samples per pixel (spp). Our training set consisted of
860 architectural images, and the validation was done using
34 images from a different set of scenes. Three versions of
the training images were rendered: two with 64 spp using
different random seeds (noisy input, noisy target), and one
with 131k spp (clean target). The validation images were
rendered in both 64 spp (input) and 131k spp (reference)
versions. All images were 960×540 pixels in size, and as
mentioned earlier, we also saved the albedo and normal
buffers for all of the input images. Even with such a small
dataset, rendering the 131k spp clean images was a stren-
uous effort — for example, Figure 7d took 40 minutes to
render on a high-end graphics server with 8 × NVIDIA
Tesla P100 GPUs and a 40-core Intel Xeon CPU.

The average PSNR of the 64 spp validation inputs with re-
spect to the corresponding reference images was 22.31 dB
(see Figure 7a for an example). The network trained for
2000 epochs using clean target images reached an average
PSNR of 31.83 dB on the validation set, whereas the simi-
larly trained network using noisy target images gave 0.5 dB
less. Examples are shown in Figure 7b,c – the training took
12 hours with a single NVIDIA Tesla P100 GPU.

At 4000 epochs, the noisy targets matched 31.83 dB, i.e.,
noisy targets took approximately twice as long to converge.
However, the gap between the two methods had not nar-
rowed appreciably, leading us to believe that some quality
difference will remain even in the limit. This is not sur-
prising, since the training dataset contained only a limited
number of training pairs (and thus noise realizations) due

Noise2Noise: Learning Image Restoration without Clean Data

Input, 8 spp L2 with x̂, ŷ L2 with T (x̂), ŷ L2 with T (x̂), T (ŷ) LHDR with x̂, ŷ LHDR with T (x̂), ŷ Reference, 32k spp
11.32 dB 25.46 dB 25.39 dB 15.50 dB 29.05 dB 30.09 dB PSNR

Figure 6. Comparison of various loss functions for training a Monte Carlo denoiser with noisy target images rendered at 8 samples per
pixel (spp). In this high-dynamic range setting, our custom relative loss LHDR is clearly superior to L2. Applying a non-linear tone map to
the inputs is beneficial, while applying it to the target images skews the distribution of noise and leads to wrong, visibly too dark results.

(a) Input (64 spp), 23.93 dB (b) Noisy targets, 32.42 dB (c) Clean targets, 32.95 dB (d) Reference (131k spp)

Figure 7. Denoising a Monte Carlo rendered image. (a) Image rendered with 64 samples per pixel. (b) Denoised 64 spp input, trained
using 64 spp targets. (c) Same as previous, but trained on clean targets. (d) Reference image rendered with 131 072 samples per pixel.
PSNR values refer to the images shown here, see text for averages over the entire validation set.

0

10

20

30

40

0 100 200 300 400 500 600 700 800 900 1000

PSNR

Noisy targets Clean targets Input

Figure 8. Online training PSNR during a 1000-frame flythrough
of the scene in Figure 6. Noisy target images are almost as good
for learning as clean targets, but are over 2000× faster to render
(190 milliseconds vs 7 minutes per frame in this scene). Both
denoisers offer a substantial improvement over the noisy input.

to the cost of generating the clean target images, and we
wanted to test both methods using matching data. That
said, given that noisy targets are 2000 times faster to pro-
duce, one could trivially produce a larger quantity of them
and still realize vast gains. The finite capture budget study
(Section 3.1) supports this hypothesis.

Online training Since it can be tedious to collect a suf-
ficiently large corpus of Monte Carlo images for training
a generally applicable denoiser, a possibility is to train a
model specific to a single 3D scene, e.g., a game level or a
movie shot (Chaitanya et al., 2017). In this context, it can
even be desirable to train on-the-fly while walking through

the scene. In order to maintain interactive frame rates, we
can afford only few samples per pixel, and thus both input
and target images will be inherently noisy.

Figure 8 shows the convergence plots for an experiment
where we trained a denoiser from scratch for the duration
of 1000 frames in a scene flythrough. On an NVIDIA Titan
V GPU, path tracing a single 512×512 pixel image with
8 spp took 190 ms, and we rendered two images to act
as input and target. A single network training iteration
with a random 256×256 pixel crop took 11.25 ms and we
performed eight of them per frame. Finally, we denoised
both rendered images, each taking 15 ms, and averaged
the result to produce the final image shown to the user.
Rendering, training and inference took 500 ms/frame.

Figure 8 shows that training with clean targets does not
perform appreciably better than noisy targets. As rendering
a single clean image takes approx. 7 minutes in this scene
(resp. 190 ms for a noisy target), the quality/time tradeoff
clearly favors noisy targets.

3.4. Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging (MRI) produces volumetric
images of biological tissues essentially by sampling the
Fourier transform (the “k-space”) of the signal. Modern
MRI techniques have long relied on compressed sensing

Noise2Noise: Learning Image Restoration without Clean Data

(CS) to cheat the Nyquist-Shannon limit: they undersample
k-space, and perform non-linear reconstruction that removes
aliasing by exploiting the sparsity of the image in a suitable
transform domain (Lustig et al., 2008).

We observe that if we turn the k-space sampling into a ran-
dom process with a known probability density p(k) over the
frequencies k, our main idea applies. In particular, we model
the k-space sampling operation as a Bernoulli process where
each individual frequency has a probability p(k) = e−λ|k|

of being selected for acquisition.3 The frequencies that are
retained are weighted by the inverse of the selection proba-
bility, and non-chosen frequencies are set to zero. Clearly,
the expectation of this “Russian roulette” process is the
correct spectrum. The parameter λ controls the overall frac-
tion of k-space retained; in the following experiments, we
choose it so that 10% of the samples are retained relative to a
full Nyquist-Shannon sampling. The undersampled spectra
are transformed to the primal image domain by the standard
inverse Fourier transform. An example of an undersam-
pled input/target picture, the corresponding fully sampled
reference, and their spectra, are shown in Figure 9(a, d).

Now we simply set up a regression problem of the form (6)
and train a convolutional neural network using pairs of two
independent undersampled images x̂ and ŷ of the same vol-
ume. As the spectra of the input and target are correct on ex-
pectation, and the Fourier transform is linear, we use the L2

loss. Additionally, we improve the result slightly by enforc-
ing the exact preservation of frequencies that are present in
the input image x̂ by Fourier transforming the result fθ(x̂),
replacing the frequencies with those from the input, and
transforming back to the primal domain before computing
the loss: the final loss reads (F−1(Rx̂(F(fθ(x̂)))) − ŷ)2,
where R denotes the replacement of non-zero frequencies
from the input. This process is trained end-to-end.

We perform experiments on 2D slices extracted from the
IXI brain scan MRI dataset.4 To simulate spectral sampling,
we draw random samples from the FFT of the (already re-
constructed) images in the dataset. Hence, in deviation from
actual MRI samples, our data is real-valued and has the
periodicity of the discrete FFT built-in. The training set con-
tained 4936 images in 256×256 resolution from 50 subjects,
and for validation we chose 500 random images from 10 dif-
ferent subjects. The baseline PSNR of the sparsely-sampled
input images was 20.03 dB when reconstructed directly us-
ing IFFT. The network trained for 300 epochs with noisy
targets reached an average PSNR of 31.10 dB on the valida-
tion data, and the network trained with clean targets reached

3Our simplified example deviates from practical MRI in the
sense that we do not sample the spectra along 1D trajectories.
However, we believe that designing pulse sequences that lead to
similar pseudo-random sampling characteristics is straightforward.

4http://brain-development.org/ixi-dataset→ T1 images.

Im
ag

e
Sp

ec
tr

um

(a) Input (b) Noisy trg. (c) Clean trg. (d) Reference
18.93 dB 29.77 dB 29.81 dB

Figure 9. MRI reconstruction example. (a) Input image with only
10% of spectrum samples retained and scaled by 1/p. (b) Recon-
struction by a network trained with noisy target images similar
to the input image. (c) Same as previous, but training done with
clean target images similar to the reference image. (d) Original,
uncorrupted image. PSNR values refer to the images shown here,
see text for averages over the entire validation set.

31.14 dB. Here the training with clean targets is similar to
prior art (Wang et al., 2016; Lee et al., 2017). Training took
13 hours on an NVIDIA Tesla P100 GPU. Figure 9(b, c)
shows an example of reconstruction results between con-
volutional networks trained with noisy and clean targets,
respectively. In terms of PSNR, our results quite closely
match those reported in recent work.

4. Discussion
We have shown that simple statistical arguments lead to new
capabilities in learned signal recovery using deep neural
networks; it is possible to recover signals under complex
corruptions without observing clean signals, without an
explicit statistical characterization of the noise or other cor-
ruption, at performance levels equal or close to using clean
target data. That clean data is not necessary for denoising
is not a new observation: indeed, consider, for instance, the
classic BM3D algorithm (Dabov et al., 2007) that draws
on self-similar patches within a single noisy image. We
show that the previously-demonstrated high restoration per-
formance of deep neural networks can likewise be achieved
entirely without clean data, all based on the same general-
purpose deep convolutional model. This points the way to
significant benefits in many applications by removing the
need for potentially strenuous collection of clean data.

AmbientGAN (Ashish Bora, 2018) trains generative adver-
sarial networks (Goodfellow et al., 2014) using corrupted
observations. In contrast to our approach, AmbientGAN
needs an explicit forward model of the corruption. We find
combining ideas along both paths intriguing.

Noise2Noise: Learning Image Restoration without Clean Data

Acknowledgments
Bill Dally, David Luebke, Aaron Lefohn for discussions and
supporting the research; NVIDIA Research staff for sugges-
tions and discussion; Runa Lober and Gunter Sprenger for
synthetic off-line training data; Jacopo Pantaleoni for the in-
teractive renderer used in on-line training; Samuli Vuorinen
for initial photography test data; Koos Zevenhoven for dis-
cussions on MRI; Peyman Milanfar for helpful comments.

References
Ashish Bora, Eric Price, Alexandros G. Dimakis. Ambi-

entGAN: Generative models from lossy measurements.
ICLR, 2018.

Cerdá-Company, Xim, Párraga, C. Alejandro, and Otazu,
Xavier. Which tone-mapping operator is the best?
A comparative study of perceptual quality. CoRR,
abs/1601.04450, 2016.

Chaitanya, Chakravarty R. Alla, Kaplanyan, Anton S.,
Schied, Christoph, Salvi, Marco, Lefohn, Aaron,
Nowrouzezahrai, Derek, and Aila, Timo. Interactive
reconstruction of Monte Carlo image sequences using a
recurrent denoising autoencoder. ACM Trans. Graph., 36
(4):98:1–98:12, 2017.

Dabov, K., Foi, A., Katkovnik, V., and Egiazarian, K. Image
denoising by sparse 3-D transform-domain collaborative
filtering. IEEE Trans. Image Process., 16(8):2080–2095,
2007.

Goodfellow, Ian, Pouget-Abadie, Jean, Mirza, Mehdi, Xu,
Bing, Warde-Farley, David, Ozair, Sherjil, Courville,
Aaron, and Bengio, Yoshua. Generative Adversarial Net-
works. In NIPS, 2014.

Hasinoff, Sam, Sharlet, Dillon, Geiss, Ryan, Adams, An-
drew, Barron, Jonathan T., Kainz, Florian, Chen, Jiawen,
and Levoy, Marc. Burst photography for high dynamic
range and low-light imaging on mobile cameras. ACM
Trans. Graph., 35(6):192:1–192:12, 2016.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun,
Jian. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. CoRR,
abs/1502.01852, 2015.

Huber, Peter J. Robust estimation of a location parameter.
Ann. Math. Statist., 35(1):73–101, 1964.

Iizuka, Satoshi, Simo-Serra, Edgar, and Ishikawa, Hiroshi.
Globally and locally consistent image completion. ACM
Trans. Graph., 36(4):107:1–107:14, 2017.

Isola, Phillip, Zhu, Jun-Yan, Zhou, Tinghui, and Efros,
Alexei A. Image-to-image translation with conditional
adversarial networks. In Proc. CVPR 2017, 2017.

Kingma, Diederik P. and Ba, Jimmy. Adam: A method for
stochastic optimization. In ICLR, 2015.

Ledig, Christian, Theis, Lucas, Huszar, Ferenc, Caballero,
Jose, Aitken, Andrew P., Tejani, Alykhan, Totz, Johannes,
Wang, Zehan, and Shi, Wenzhe. Photo-realistic single
image super-resolution using a generative adversarial net-
work. In Proc. CVPR, pp. 105–114, 2017.

Lee, D., Yoo, J., and Ye, J. C. Deep residual learning for
compressed sensing MRI. In Proc. IEEE 14th Interna-
tional Symposium on Biomedical Imaging (ISBI 2017),
pp. 15–18, 2017.

Lustig, Michael, Donoho, David L., Santos, Juan M., and
Pauly, John M. Compressed sensing MRI. In IEEE Signal
Processing Magazine, volume 25, pp. 72–82, 2008.

Maas, Andrew L, Hannun, Awni Y, and Ng, Andrew. Recti-
fier nonlinearities improve neural network acoustic mod-
els. In Proc. International Conference on Machine Learn-
ing (ICML), volume 30, 2013.

Mao, Xiao-Jiao, Shen, Chunhua, and Yang, Yu-Bin. Im-
age restoration using convolutional auto-encoders with
symmetric skip connections. In Proc. NIPS, 2016.

Martin, D., Fowlkes, C., Tal, D., and Malik, J. A database
of human segmented natural images and its application
to evaluating segmentation algorithms and measuring
ecological statistics. In Proc. ICCV, volume 2, pp. 416–
423, 2001.

Mäkitalo, Markku and Foi, Alessandro. Optimal inversion
of the Anscombe transformation in low-count Poisson
image denoising. IEEE Trans. Image Process., 20(1):
99–109, 2011.

Reinhard, Erik, Stark, Michael, Shirley, Peter, and Ferwerda,
James. Photographic tone reproduction for digital images.
ACM Trans. Graph., 21(3):267–276, 2002.

Ronneberger, Olaf, Fischer, Philipp, and Brox, Thomas.
U-net: Convolutional networks for biomedical image
segmentation. MICCAI, 9351:234–241, 2015.

Rousselle, Fabrice, Knaus, Claude, and Zwicker, Matthias.
Adaptive sampling and reconstruction using greedy error
minimization. ACM Trans. Graph., 30(6):159:1–159:12,
2011.

Srivastava, Nitish, Hinton, Geoffrey, Krizhevsky, Alex,
Sutskever, Ilya, and Salakhutdinov, Ruslan. Dropout:
A simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15:1929–1958,
2014.

Ulyanov, Dmitry, Vedaldi, Andrea, and Lempitsky, Victor S.
Deep image prior. CoRR, abs/1711.10925, 2017.

Noise2Noise: Learning Image Restoration without Clean Data

Veach, Eric and Guibas, Leonidas J. Optimally combining
sampling techniques for Monte Carlo rendering. In Proc.
ACM SIGGRAPH 95, pp. 419–428, 1995.

Wang, S., Su, Z., Ying, L., Peng, X., Zhu, S., Liang, F.,
Feng, D., and Liang, D. Accelerating magnetic resonance
imaging via deep learning. In Proc. IEEE 13th Inter-
national Symposium on Biomedical Imaging (ISBI), pp.
514–517, 2016.

Zeyde, R., Elad, M., and Protter, M. On single image scale-
up using sparse-representations. In Proc. Curves and
Surfaces: 7th International Conference, pp. 711–730,
2010.

Zhang, Richard, Isola, Phillip, and Efros, Alexei A. Colorful
image colorization. In Proc. ECCV, pp. 649–666, 2016.

Noise2Noise: Learning Image Restoration without Clean Data

A. Appendix
A.1. Network architecture

Table 2 shows the structure of the U-network (Ronneberger
et al., 2015) used in all of our tests, with the exception
of the first test in Section 3.1 that used the “RED30” net-
work (Mao et al., 2016). For all basic noise and text removal
experiments with RGB images, the number of input and
output channels were n = m = 3. For Monte Carlo de-
noising we had n = 9,m = 3, i.e., input contained RGB
pixel color, RGB albedo, and a 3D normal vector per pixel.
The MRI reconstruction was done with monochrome im-
ages (n = m = 1). Input images were represented in range
[−0.5, 0.5].

A.2. Training parameters

The network weights were initialized following He et
al. (2015). No batch normalization, dropout or other reg-
ularization techniques were used. Training was done us-
ing ADAM (Kingma & Ba, 2015) with parameter values
β1 = 0.9, β2 = 0.99, ε = 10−8.

Learning rate was kept at a constant value during training
except for a brief rampdown period at where it was smoothly
brought to zero. Learning rate of 0.001 was used for all
experiments except Monte Carlo denoising, where 0.0003
was found to provide better stability. Minibatch size of 4
was used in all experiments.

A.3. Finite corrupted data in L2 minimization

Let us compute the expected error in L2 norm minimization
task when corrupted targets {ŷi}Ni=1 are used in place of
the clean targets {yi}Ni=1, with N a finite number. Let yi
be arbitrary random variables, such that E{ŷi} = yi. As
usual, the point of least deviation is found at the respec-
tive mean. The expected squared difference between these
means across realizations of the noise is then:

Eŷ

[
1

N

∑
i

yi −
1

N

∑
i

ŷi

]2

=
1

N2

[
Eŷ(

∑
i

yi)
2 − 2Eŷ

[
(
∑
i

yi)(
∑
i

ŷi)

]
+ Eŷ(

∑
i

ŷi)
2

]

=
1

N2
Var(

∑
i

ŷi)

=
1

N

 1

N

∑
i

∑
j

Cov(ŷi, ŷj)

(8)

In the intermediate steps, we have used Eŷ(
∑
i ŷi) =

∑
i yi

and basic properties of (co)variance. If the corruptions are

NAME Nout FUNCTION

INPUT n
ENC CONV0 48 Convolution 3× 3
ENC CONV1 48 Convolution 3× 3
POOL1 48 Maxpool 2× 2
ENC CONV2 48 Convolution 3× 3
POOL2 48 Maxpool 2× 2
ENC CONV3 48 Convolution 3× 3
POOL3 48 Maxpool 2× 2
ENC CONV4 48 Convolution 3× 3
POOL4 48 Maxpool 2× 2
ENC CONV5 48 Convolution 3× 3
POOL5 48 Maxpool 2× 2
ENC CONV6 48 Convolution 3× 3
UPSAMPLE5 48 Upsample 2× 2
CONCAT5 96 Concatenate output of POOL4
DEC CONV5A 96 Convolution 3× 3
DEC CONV5B 96 Convolution 3× 3
UPSAMPLE4 96 Upsample 2× 2
CONCAT4 144 Concatenate output of POOL3
DEC CONV4A 96 Convolution 3× 3
DEC CONV4B 96 Convolution 3× 3
UPSAMPLE3 96 Upsample 2× 2
CONCAT3 144 Concatenate output of POOL2
DEC CONV3A 96 Convolution 3× 3
DEC CONV3B 96 Convolution 3× 3
UPSAMPLE2 96 Upsample 2× 2
CONCAT2 144 Concatenate output of POOL1
DEC CONV2A 96 Convolution 3× 3
DEC CONV2B 96 Convolution 3× 3
UPSAMPLE1 96 Upsample 2× 2
CONCAT1 96+n Concatenate INPUT

DEC CONV1A 64 Convolution 3× 3
DEC CONV1B 32 Convolution 3× 3
DEV CONV1C m Convolution 3× 3, linear act.

Table 2. Network architecture used in our experiments. Nout de-
notes the number of output feature maps for each layer. Number
of network input channels n and output channels m depend on
the experiment. All convolutions use padding mode “same”, and
except for the last layer are followed by leaky ReLU activation
function (Maas et al., 2013) with α = 0.1. Other layers have linear
activation. Upsampling is nearest-neighbor.

mutually uncorrelated, the last row simplifies to

1

N

[
1

N

∑
i

Var(yi)

]
(9)

In either case, the variance of the estimate is the average
(co)variance of the corruptions, divided by the number of
samples N . Therefore, the error approaches zero as the
number of samples grows. The estimate is unbiased in the

Noise2Noise: Learning Image Restoration without Clean Data

sense that it is correct on expectation, even with a finite
amount of data.

The above derivation assumes scalar target variables. When
ŷi are images, N is to be taken as the total number of scalars
in the images, i.e., #images × #pixels/image × #color chan-
nels.

A.4. Mode seeking and the “L0” norm

Interestingly, while the “L0 norm” could intuitively be ex-
pected to converge to an exact mode, i.e. a local maximum
of the probability density function of the data, theoretical
analysis reveals that it recovers a slightly different point.
While an actual mode is a zero-crossing of the derivative of
the PDF, the L0 norm minimization recovers a zero-crossing
of its Hilbert transform instead. We have verified this behav-
ior in a variety of numerical experiments, and, in practice,
we find that the estimate is typically close to the true mode.
This can be explained by the fact that the Hilbert transform
approximates differentiation (with a sign flip): the latter is
a multiplication by iω in the Fourier domain, whereas the
Hilbert transform is a multiplication by −i sgn(ω).

For a continuous data density q(x), the norm minimization
task for Lp amounts to finding a point x∗ that has a min-
imal expected p-norm distance (suitably normalized, and
omitting the pth root) from points y ∼ q(y):

x∗ = argmin
x

Ey∼q{
1

p
|x− y|p}

= argmin
x

∫
1

p
|x− y|pq(y) dy

(10)

Following the typical procedure, the minimizer is found at a
root of the derivative of the expression under argmin:

0 =
∂

∂x

∫
1

p
|x− y|pq(y) dy

=

∫
sgn(x− y)|x− y|p−1q(y) dy

(11)

This equality holds also when we take limp→0. The usual
results for L2 and L1 norms can readily be derived from
this form. For the L0 case, we take p = 0 and obtain

0 =

∫
sgn(x− y)|x− y|−1q(y) dy

=

∫
1

x− y
q(y) dy.

(12)

The right hand side is the formula for the Hilbert transform
of q(x), up to a constant multiplier.

